
1

Amit - The Situation Manager

ASAF ADI

OPHER ETZION

IBM Research Laboratory in Haifa

Email: opher@il.ibm.com
Phone: +972-4-829-6455
Fax: +972-4-829-6116

Abstract:

This paper presents the “situation manager”, a tool that includes both a language and an efficient

run-time execution mechanism, aimed at reducing the complexity of active applications. This tool

follows the observation that in many cases, there is a gap between current tools that enable to react

to a single event (following the ECA: Event-Condition-Action paradigm), and the reality, in which

a single event may not require any reaction, however the reaction should be given to patterns over

the event history.

The concept of situation presented in this paper, extends the concept of composite event, in its

expressive power, flexibility, and usability. This paper motivates the work, surveys other efforts

in this area, and discusses both the language and the execution model.

Keywords: active technology, active databases, high-level languages, composite

events.

2

1. Introduction

In recent years, a substantial amount of work has been invested in systems that

either react automatically to actual changes (reactive systems), or to predicted

changes in their environment (proactive systems). These systems perform actions

or signal alerts in response to the occurrence of events that are signaled when

changes in the environment occur (or inferred). Such systems are used in a wide

spectrum of areas and include command and control systems, active databases,

system management tools, customer relationship management systems and e-

commerce applications.

A central issue in reactive and proactive systems is the ability to bridge the gap

between the events that are identified by the system and the situations to which

the system is required to react. Some examples, from various areas, of situations

that need to be handled are:

• A client wishes to activate an automatic “buy or sell” program, if a security that is traded

in two stock markets, has a difference of more than five percent between its values in the

markets, such that the time difference between the reported values is less than five

minutes (“arbitrage”).

• A customer relationship manager wishes to receive an alert, if a customer’s request was

reassigned at least three times.

• A groupware user wishes to start a session when there are ten members of the group

logged in to the groupware server.

• A network manager whishes to receive an alert, if the probability that the network will be

overloaded in the next hour is high.

Figure 1 – example of possible situations

There are a variety of tools that have been constructed to provide work

environment for event driven applications. The work described in this paper has

been motivated by the observation that most of the contemporary tools can react

to the occurrence of a single event. In many applications (including all the

examples shown above) the customer wishes to react to the occurrence of a

situation, which is a semantic concept in the customer’s domain of discourse.

The syntactic equivalent of a situation is a (possibly complex) pattern over the

event history. Thus, there is a gap between applications’ requirements and the

capabilities of the supporting tools, resulting in excessive work. This paper aims

at bridging this gap and saving the excessive work. It should be noted that the

3

“pattern over the event history” may in some cases be only an approximation of

the actual situation, or express the situation with some level of uncertainty. In this

paper we have made the simplified assumption of equivalence between these two

terms. Some tools and some research prototypes approach this difficulty by

providing a mechanism for the definition of composite events that are detected

when a predicate over the event history is satisfied. However, previous research

was focused on specific fields such as active database [7][18][36] and network

management [31][35], and resulted in partial solutions that have limited

expressive power and can only be used in these specific domains by systems to

which they were specially designed. Moreover, these prototypes are not able to

fully express some of the fundamentals of a situation definition:

1. The events that can participate in a situation detection.

2. The context during which a situation detection is relevant.

3. The impact of the semantic information that is reported with events on

situation detection (i.e. the semantic conditions that must be satisfied in

order to detect a situation).

4. The decision alternatives about the reuse of event instances that

participated in situation detection. The decision is whether, and on which

conditions, the event instance is “consumed” and cannot be used for the

detection of other situations.

In this paper we present the Situation Manager, a part of Amit (Active

Middleware Technology) framework. Amit is both an application development

and run-time control tool that is intended to enable fast and reliable development

of reactive and proactive applications. The situation manager is a run-time

monitor that receives information about the occurrence of events, detects the

situations to which applications are required to react, and repots the detected

situations to subscribers, typically other applications. It transfers the responsibility

of situation detection from the application to a high level tool and bridges the gap

between the application and the situations to which it requires to react. It provides

a general solution (i.e. a solution that is practical in many domains) that can

express the fundamentals of a situation definition that were describes above.

The situation manager's high-level architecture is described in figure 2.

4

Figure 2 – the situation manager’s high level architecture

This paper reports on the situation concept and its implementation in the

framework of the Amit project. In section 2, we show the situation definition

language; in section 3 we describe algorithms and data structures that are used by

the situation manager during the detection process; in section 4 we present Amit’s

performance measurements, and in section 5 we review some previous work

aimed to define the semantics of composite events and compare it to Amit.

Section 6 concludes the paper.

2. The Situation definition language

This section describes the features of the situation definition language, followed

by examples from the domain of e-commerce application (stock market). The

language is implemented using XML (Extensible Markup Language); its DTD

(Document Type Definition), which describes a definition meta-data, is specified

in appendix A.

Section 2.1, event definition, describes the concept of event that is the basic

building block of the situation language. Section 2.2, lifespan definition, describes

the concept of lifespan, which is the temporal context during which situation

detection is relevant. Section 2.3, situation definition, describes to concept of

situation and how events, keys, and lifespans are used during situation

composition. Section 2.4, key definition, describes the concept of key, a semantic

equivalence among events.

Event

Event

Source

Event

Source

Event

Source

Situation Manager

Event

Event

Application

Situations

Application

Application

5

2.1. Event definition

An event is a significant (in some domains) instantaneous (happens in a specific

point in time) atomic (happens completely or not at all) occurrence. We

distinguish between concrete events and inferred events. Concrete events are

those that happen in reality, usually as a result of a change in an object's state.

Examples are: a person entering the meeting room; a light in the third floor of the

building is turned on. Inferred events do not happen in the physical reality, but can

be logically concluded by viewing the world's state (context) and the history of

concrete event occurrences. An inferred event represents the occurrence of a

significant situation in the physical reality. Examples are: all the invitees have

already arrived to the meeting room (the meeting can start); the electricity load in

the third floor is too high (electric outage may occur).

We define two classes of events accordingly:

• External events are those, usually concrete events, which are pushed into

the situation manager by external sources in runtime. These include

sensors, other applications and human sources.

• Internal events are inferred events that are signaled by the situation

manager when it detects the occurrence of a situation.

An event, either external or internal, is represented by an event instance that

contains the necessary information about the event. This information includes: the

occurrence time of the event, data that is relevant to applications that react to the

event, and additional data that is needed in order to decide if a situation (inferred

event) has occurred.

An event type describes the common properties of a similar set of event instances

on an abstract level. It defines a schema of attributes that are instantiated in

runtime when an event actually occurs and describes the information that is

associated with the event. This information is pushed into the situation manager, if

the event is external and is calculated by it, if the event is internal.

6

A trade-start event and a trade-end event occur when a trading day in a specific stock exchange

starts or ends respectively. The schema of these events has one attribute: stock-exchange.

A stock-quote event, a bond-quote event, and an option-quote event occur when a specified

stock/bond/option is quoted in a specific stock exchange. The schema of these events has four

attributes: stock-exchange, symbol, value, and change (in value since last quote).

An example for a stock-quote event instance is a tuple (NasdaqNM, TEVA, $65.75, +4.89%) that

was quoted on Nov 7, 2000, 15:25. Another example is a tuple (Berlin, TEVA, $62.85, +5.04%)

that was quoted on Nov 7, 2000, 08:31.

Figure 4 – example of event definition

There is a distinction between the time in which the event happens in reality

(event time) and the time it is detected by the system (detection time). This

phenomenon may be a result of delays in event reporting that is inflicted by

synchronization problems in distributed environment (network overload) and

inaccuracies in sensor readings. This phenomenon and situations in which the

situation manager, a sensor, or a network line is down, may result in the detection

of situations that have not occurred in reality or in missing the detection of

situations that occurred in reality [6][14]. The consequences of this issue are

beyond the scope of this paper.

The set of event types ∑E is a finite set ∑E = {E1, E2, …, En}, n ≥ 0. An event type E is a tuple E =

(id, atts) where id is a unique identifier (event name) such that ∀ Ei, Ej ∈ ∑E, i�j : Ei.id ≠ Ej.id. and

atts = {att1, att2, …, attn}, n ≥ 0, is a finite set of attributes. An attribute att is a tuple att = (id,

type) where id is a unique identifier (attribute name) such that ∀ E ∈ ∑E, ∀ atti, attj ∈ E.atts, i≠j :

atti.id ≠ attj.id and type is an attribute type, type ∈ {number, boolean, string}.

Figure 5 – formal definition of event type

2.2. Lifespan definition

A lifespan is the temporal context during which situation detection is relevant.

The lifespan is an interval bounded by two events called initiator and terminator.

An occurrence of an initiator event initiates the lifespan and an occurrence of a

terminator event terminates it. The initiator and terminator can be external events,

internal events, or system events such as system startup and system shutdown.

A lifespan type describes the common properties of a similar set of lifespans on an

abstract level. It defines the set of events that can initiate the lifespan, the set of

events that can terminate it, and the conditions for lifespan initiation and

termination. Note that more than one lifespan of the same type may be open

7

simultaneously, if two initiator events have occurred before a terminator event,

depending on the conditions for initiation.

A lifespan has its own semantics, which may be independent from the semantics

of a specific situation. In fact, a single lifespan can be a relevant context for the

detection of multiple situations. Example is the lifespan trading-day, which starts

when the event trade-start occurs and ends when the event trade-end occurs. This

lifespan is a relevant time window for numerous situations. Moreover, the

conditions for lifespan initiation and termination are not influenced by the specific

situations that are relevant during the lifespan.

The notion of lifespan was not formally defined in previous works. It was usually

simulated by the operator sequence with three operands, whose first and last

operands can be looked as an initiator and terminator of the time interval, in

which the second operand, usually a complex event, can occur. Note that a

simulation of lifespan using the sequence operator covers a single lifespan's

initiation and termination policy. Snoop [7] defines the special operators A, A*, P,

P* to emulate the semantics of lifespans. However, this emulation is only partially

analogous to the notation of lifespan and has different semantics. It strongly

couples the lifespan with a specific composite event and the decision whether to

initiate or terminate the lifespan with a parameter context. Note that a parameter

context covers a single lifespan's initiation and termination policy. However, in

many cases such emulations cannot represent the notation of lifespan at all.

A broker wants to run an automatic buy & sell in New York stock exchange only. He wants to

detect situations during the NYSE trading day that requires the activation of such a program.

• Models that emulate the notation of lifespan using the sequence operator can only detect the

required situations at the end of the trading day. However, at the end of the trading day, the

knowledge that the situations represent is not relevant anymore.

• Models that emulate the notation of lifespan using special operators like Snoop's [7] A, A*, P,

and P* can detect the required situations. However, they also detect composite events that

represent situations that did not occur in reality because events signaling the starting and

ending of trading days in different stock markets interleave. In this case all possible

combinations of composite events must be detected and filtered in the condition part of the

ECA rule. This results in a substantial superfluous computation.

Figure 6 – example of lifespan management

8

2.2.1. Lifespan initiation

A lifespan is initiated by an occurrence of an initiator when an event (either

external or internal) occurs, or (if defined this way) when the situation manager

starts to run (i.e. system startup). The lifespan type defines whether lifespan

instances are initiated by system startup, by event occurrences or both and under

which conditions (i.e. the lifespan's initiators). The conditions that an event

instance must satisfy in order to initiate a lifespan include threshold conditions on

the event instance itself and a correlation code that determines the lifespan

duplication policy. There are two possible correlation codes: add and ignore. If

the correlation code is ignore, a new lifespan is initiated, only if a lifespan of the

same type is not already open. If the correlation code is add, a new lifespan is

opened while any existing lifespans remain open. Multiple values of the tuple that

consists of event type, threshold conditions, and correlation code, may be defined

for the same lifespan. This allows a lifespan to be initiated by different events and

under different conditions, and enables the definition of lifespans that represent

time intervals in which situations are relevant in reality. Note that an event

occurrence can initiate only a single lifespan of the same type, although it may

satisfy the conditions of more than one initiation tuple defined by that type.

9

A broker wishes to identify situations regarding IBM's stocks and options that are traded in the

New York stock exchange. These situations are relevant in time intervals that start when an IBM's

option is quoted or when IBM's stock is quoted, if no situation is already being evaluated in such a

time interval. All open lifespans are discard if a situation is detected or 60 minutes after their

initiation.

 lifespan = "example 7"

 initiator = event: "option-quote"

 where: "symbol = IBM and stock exchange = NYSE"

 correlate: "add"

 initiator = event: "stock-quote"

 where: "symbol = IBM and stock exchange = NYSE"

 correlate: "ignore"

 terminator = event: "detected situation"

 where: "symbol = IBM and stock exchange = NYSE"

 termination type: "discard"

 quantifier: "each"

 terminator = expiration interval: "60 minutes"

 termination type: "discard"

Below is a scenario of event occurrences and their influence on lifespan initiation:

1. An IBM's stock-quote event from New York initiates a new lifespan.

2. An IBM's option-quote event from Berlin is ignored.

3. An IBM's stock-quote event from New York is ignored.

4. An IBM's option-quote event from New York initiates a new lifespan.

Two instances of this lifespan, initiated by events one and four, are open simultaneously. The

situation is detected in each one of these time intervals separately. When a situation is detected,

with no importance to the lifespan in which it was detected, all open lifespans are discarded.

Figure 7 – example of lifespan initiation

2.2.2. Lifespan termination

A lifespan remains open since its initiation time until it is either terminated by an

occurrence of a terminator or it expires. The lifespan type defines whether

lifespan instances are terminated after a period of time, by event occurrences, or

both; under which conditions; and in case of multiple lifespan instances, which

lifespans are terminated. The termination type also determines the conditions that

an event instance must satisfy in order to terminate a lifespan. The conditions

include threshold conditions on the event instance itself, a quantifier that

determines which open lifespans are terminated, and a termination type that

10

specifies whether situations that are detected during the lifespan are discarded.

There are three possible quantifier values: first, last and each. If the quantifier is

first, the oldest lifespan is terminated; if the quantifier is last, the newest lifespan

is terminated; and if the quantifier is each, all the open lifespans are terminated.

The termination type specifies if a situation that is detected during (or at the end

of) the lifespan and was not reported should be discarded (discard termination

type) or not (terminate termination type).

Multiple instances of the tuple that consists of event type, threshold conditions,

termination type, and quantifier, can be defined for the same lifespan. This allows

a lifespan to be terminated by different events and under different conditions and

makes it possible to define lifespans that represent time intervals in which

situations are relevant in reality.

The set of lifespan types ∑L is a finite set ∑L = {L1, L2, …, Ln}, n ≥ 0. A lifespan type L is a tuple L

= (id, inits, terms) where id is a unique identifier (lifespan name) such that ∀ Li, Lj ∈ ∑L, i�j : Li.id

≠ Lj.id; inits = {init1, init2, …, initn}, n > 0, is a finite set of initiators; and terms = {term1, term2,

…, termn}, n ≥ 0, is a finite set of terminators. An initiator init is a tuple init = (id, correlation,

cond) where id is the identifier of the initiating event or the symbol startup (if the lifespan is

initiated at startup) such that ∀ L ∈ ∑L, ∀ init ∈ L.inits, ∃ E ∈ ∑E : init.id = E.id or init.id = startup;

correlation ∈ {add, ignore} is a correlation code; and cond is a predicate over the initiating event

attributes.

A terminator term is a tuple term = (id, quantifier, termType, cond) where id is the identifier of the

terminating event or an expiration interval (if the lifespan is terminated after a specific period of

time) such that ∀ L ∈ ∑L, ∀ term ∈ L.terms, ∃ E ∈ ∑E : term.id = E.id or term.id is an expiration

interval; quantifier ∈ {first, last, each}, termType ∈ {terminate, discard}is a termination type;

and cond is a predicate over the terminating event attributes.

Figure 8 – formal definition of lifespan

2.3. Situation definition

We have defined the inferred event (situation) to be the occurrence of a significant

situation that does not happen explicitly in the physical reality, but can be

logically inferred by viewing the world's state and the history of concrete event

occurrences. A situation accordingly defines the set of events, both internal and

external, that need to be evaluated, and the conditions they must satisfy in order to

determine if a significant situation (inferred event) occurred in reality, and an

internal event must be signaled. A situation also defines the information

11

associated with an internal event based on the information associated with the

specific event instances that triggered it.

Formally a situation S is a function from a set of event types ∑E to an event type

E, where the domain is the set of events that need to be evaluated in order to

decide if a situation occurred, and the range is the internal event that is triggered

when the situation is detected.

We use the term situation to refer to both an inferred event and its definition.

However, the intent is usually clear from the context.

The decision process, whether a situation occurred or not, is divided into three

phases. Each phase is based upon one dimension of the situation definition.

1. The collection phase - event instances that play any role in the situation

are collected.

2. The detection phase - event instances, whose occurrence entail detection of

the situation, are selected.

3. The consumption phase - event instances that participate in the situation

are removed from the collection.

Below is a short description of the decision process.

While the lifespan is open, instances of events that participate in the situation are collected (1).

If the conditions for situation occurrence have been met, then a subset of the event instances in the

collection from those that caused the detection of the situation are selected (2). These instances are

consumed and removed from the collection (3).

Figure 9 – decision process for situation detection

2.3.1. Collection phase

A candidate is an event instance that has an impact upon the situation detection.

In order to decide if a situation occurred in reality, all candidates must be

monitored. Moreover, it is sufficient to base this decision upon these event

instances only. The definition of this candidates’ collection should include the

following information:

1. The time interval during which the situation detection is relevant.

A lifespan is the time interval during which a situation detection is

relevant, thus, every situation is bounded to a lifespan type and only event

instances that occur while the lifespan is open are considered for the

situation. Note that if multiple lifespans of the same type are open

12

simultaneously, the situation is evaluated in each one separately, thus the

detection of a situation in one lifespan does not influence the detection of a

situation in other lifespans. Accordingly, the decision if an event instance

is a candidate of the situation is done in each lifespan separately.

2. The types of events that can participate in the situation.

We defined a situation S as a function from a set of event types ∑E to an

event type E. We call an event that in the domain of the situation function

(i.e. an event that must be evaluated in order to decide if a situation occur)

an operand of the situation.

3. The conditions that event instances must satisfy in order to participate in the

collection.

An event instance that occurs while the lifespan is open must satisfy some

conditions in order to be considered as candidate. These conditions are

defined for each operand of the situation and may differ among operands.

They include threshold conditions on the event instance itself and override

conditions that determine the influence of the new candidate on other

candidates of the operand. This means that existing candidates of the

operand are removed from the collection if the new candidate satisfies the

override conditions.

The candidates in the collection are associated with the operand they belong to

and form a separate candidate list for each operand. Note that a situation can have

more that one operand of the same type. In this case the decision whether an event

instance belongs to the candidate list of an operand is done separately for each

operand, thus an event instance can be a candidate of one operand only, of some

operands, or all operands.

13

The situation portal-collapse is influenced by the quotes of Yahoo and Lycos. It is detected if

within a five minutes time window since the value of one of these companies increases, the value

of Yahoo decreases in more than one percent in a single quote and the value of Lycos decreases in

more than two percents in a single quote (i.e. high tendency for decreases).

A new lifespan is opened for this situation whenever Yahoo or Lycos stock increases, thus

multiple lifespans of this situation can be open simultaneously, in each one the situation is detected

separately.

This situation has two operands, both have the same event type: stock-quote. The first operand has

a threshold condition that allows only quotes of Yahoo that decrease in more than one percent to

be candidates. The second operand has a threshold condition that allows only quotes of Lycos that

decrease in more than two percent to be candidates.

Below is a scenario of event occurrences and their influence on the situation:

1. A Yahoo stock is quoted with an increase in its value. A new lifespan is opened.

2. A Lycos stock is quoted with a decrease of three percents in its value. The instance is a

candidate of the second operand.

3. A Lycos stock is quoted with an increase in its value. A second lifespan is opened.

4. A Yahoo quote is quoted with a decrease of half percent in its value and ignored.

5. A Yahoo quote is quoted with a decrease of two percents in its value. The instance is a

candidate of the first operand in both lifespans but the situation is detected only in the first

one.

Figure 10 – example of collection phase

2.3.2. Detection phase

The decision process, whether a situation occurred, can be performed immediately

when an event that is a candidate of the situation occurs, or when the lifespan of

the situation is terminated. Similarly the report on the situation can be delayed

until the lifespan terminates. These possibilities are captured by a detection mode

that can have one of these values:

1. Immediate - the conditions for situation detection are evaluated

immediately when a new event occurs. The situation is reported

immediately when it is detected.

2. Delayed - the conditions for situation detection are evaluated immediately

when a new event occurs. The situation, if detected, is reported at the end

of the lifespan.

3. Deferred - the conditions for situation detection are evaluated at the end of

the lifespan. The situation, if detected, is reported immediately.

14

The decisions, whether a situation occurred and which event instance actually

triggered it, are based upon a combination of an operator, a condition, and a set of

quantifiers. The quantifiers designate a selection strategy when multiple

occurrences of event instances of the same type that satisfy the conditions are

possible. A quantifier is applied to every operand and has six possible values:

first, strict first, last, strict last, each, and strict each.

1. First - selects the first instance of the operand that satisfies the conditions.

2. Strict first - selects the first instance of the operand if it satisfies the

conditions.

3. Last - selects the last instance of the operand that satisfies the conditions.

4. Strict last - selects the last instance of the operand if it satisfies the

conditions.

5. Each - selects all the instances of the operand that satisfy the conditions.

6. Strict Each - selects all the instance of the operand if all of them satisfy the

conditions.

Note that if event instances that satisfy the conditions cannot be selected for every

operand, the situation may not be detected, depending on the situation’s operator.

Our model supports numerous operators that are classified to several groups.

1. Joining operators: all & sequence

• The operator all(E1, E2, …, Ek) designates a conjunction of events

E1…Ek with no order importance.

• The operator sequence(E1, E2, …, Ek) designates an ordered

conjunction of events E1…Ek where event Ei precedes event Ei+1.

15

The situation portal-collapse that was described in the previous example is defined using the

operator all.

 operator = "all"

 detection mode = "immediate"

 first operand = event: "stock-quote"

 threshold: "symbol = YHOO and change = -1"

 quantifier: "first"

 second operand = event: "stock-quote"

 threshold: "symbol = LCOS and change = -2"

 quantifier: "first"

Its lifespan is

 initiator = event: "option-quote"

 where: "symbol = YHOO or symbol = LCOS and change > 0"

 correlate: "add"

 terminator = expirationInterval: "5 minutes"

The situation last-increase occurs if a stock increases at least two times within a lifespan. It is

reported only once at the end of the lifespan with information based on the two last increases in the

stock. This situation is defined using the operator sequence and a condition that imposes that the

two quotes that trigger it have the same symbol.

 operator = "sequence"

 detection mode = "deferred"

 first operand = event: "stock-quote" as: "first-quote"

 threshold: "change > 0"

 quantifier: "last"

 second operand = event: "stock-quote" as: "second-quote"

 threshold: "change > 0"

 quantifier: "first"

 condition = "first-quote.symbol = second-quote.symbol"

Figure 11 – example of joining operators

2. Counting operators: atlesat, atmost & nth

Counting operators designate a conjunction of n weighted events. A

weight, that can have a negative value, is associated with each event

operand. A situation with a counting operator is triggered when the total

weight of collected events satisfies the operator.

• The operator atleast(n, E1, E2, …, Ek) designates a minimal

conjunction of m events out of E1…Ek with no order importance

such that the total weight of the m events is more than n.

16

• The operator atmost(n, E1, E2, …, Ek) designates a maximal

conjunction of m events out of E1…Ek with no order importance

such that the total weight of the m events is less than n within the

lifespan. A situation with this operator is always detected at the end

of the lifespan (i.e. deferred detection mode).

• The operator nth(n, E1, E2, …, Ek) designates a conjunction of m

events out of E1…Ek with no order importance such that the total

weight of the m events is exactly n.

The situation decrease-tendency occurs if the amount of company's stocks that are traded in

decrease is higher than then number of stocks that are traded in increase by more than ten. A quote

with an increase in the stock value has a default weight of one and a quote with a decrease in the

stock values has a weight of minus one. More than a single candidate of each operand is counted

as determined by the quantifier each.

 operator = "atleast 10"

 detection mode = "immediate"

 first operand = event: "stock-quote"

 threshold: “change < 0”

 quantifier: "each"

 second operand = event: "stock-quote"

 threshold: “change >0”

 weight: “-1”

 quantifier: "each"

The situation low-tradability occurs if not all of the company's securities are traded. In order to

count only one candidate of each operand, the operands' quantifier is set to last.

 operator = "atmost 3"

 detection mode = "deferred"

 first operand = event: "stock-quote"

 quantifier: "last"

 second operand = event: "option-quote"

 quantifier: "last"

 third operand = event: "bond-quote"

 quantifier: "last"

 condition = "stock-quote.symbol = option-quote.symbol and

 stock-quote.symbole = bond-quote.symbole"

Figure 12 – example of counting operators

17

An operand default weight is one, thus in the default case the operator

atleast designates a minimal conjunction of n events, the operator atmost

designates a maximal conjunction of n events, and the operator nth

designates a conjunction of exactly n events.

The decision whether more than a single candidate that is bounded to an

operand is counted is determined by the operand's quantifier. The

quantifiers each and strict each designate that more then one candidate is

counted, while other quantifiers designate that only a single candidate is

counted. Note that there is no restriction on the value of the enumerator n;

it can be greater than the number of operands k, equal to k, or less than k.

3. Absence operators: not & unless

• The operator not(E1, E2, …, Ek) designates that non of the events

E1…Ek has occurred within the lifespan.

• The operator unless(E1, E2) designates the occurrence of the first

operand and the non occurrence of the second within the lifespan.

Situations with absence operator are always detected at the end of the

lifespan (i.e. deferred detection mode).

The situation strong-buy occurs if a stock price only increases during a trading day (lifespan). This

situation is defined using the unless operator and is not .

 operator = "unless"

 detection mode = "deferred"

 lifespan = “trading_day”

 first operand = event: "stock-quote" as: "quote-inc"

 threshold: "change > 0"

 quantifier: "first"

 second operand = event: "stock-quote" as: "quote-dec"

 threshold: "change < 0"

 quantifier: "first"

 condition = "quote-inc.symbol = quote-dec.symbol"

Figure 13 – example of absence operators

4. Temporal operators: every, after & unless

• The operator every(t) designates a period of i*t time-units since the

situation's lifespan initiation, where i > 0

• The operator after(E, t, c) designates a period of t time-units since

the occurrence of E, where the correlation code c determines the

18

correlation between two instances of E that the time distance

between their occurrences is less than t. There are three possible

correlation codes: add, ignore, and replace.

 Add - both occurrences of E are considered.

 Ignore - the first occurrence of E is considered and the

second occurrence is ignored.

 Replace - the first occurrence of E is ignored and the

second occurrence is considered.

• The operator at(tp) designates time points that match the time

pattern tp. A time pattern is a time-stamp formatted dd/mm/yyyy

hh:mm:ss.mmm, that can contain a wildcard, denoted "*", in its

fields and matches time points that have any value in these fields.

For example, the time pattern **/11/2000 00:00:00.000 matches

the beginning of every day in November 2000.

Situations with absence operator are always triggered when they occur (i.e.

immediate detection mode).

2.3.3. Consumption phase

A situation is usually repetitive (i.e. may occur more than once during its

lifespan). However, a singular situation (i.e. may occur only once during its

lifespan), denoted by the repeat mode = once, can be defined. Note that a

repetitive situation that is detected in the deferred detection mode can be detected

more than once at the end of the lifespan. In this case, the decision process

whether a situation occurred or not, is preformed repetitively at the end of the

lifespan until no more new situations are detected.

If the situation is repetitive, a decision, whether the event instances that triggered

it can be considered again as candidates for the same situation, should be applied.

This decision is determined by the situation's consumption policy. The

consumption policy is defined by a condition that event instances that triggered

the situation must satisfy in order to be considered again as a candidate of the

situation. This condition, which is called consumption condition, can be defined

for every operand. An event instance that triggered the situation and satisfies the

consumption condition that is associated with its operand is removed from the

19

candidate list of that operand. If a consumption condition is not defined for an

operand, event instances of this operand are always consumed (i.e. the default

consumption condition is true).

The consumption modes that are defined in some composite event languages (e.g.

snoop [7]) denote a predefined set of simple consumption conditions. These

consumption modes can be defined in our model using a combination of a

quantifier and consumption condition for each operand. Example is a situation

that corresponds to a snoop [7] composite event in the recent parameter context

that consumes the last instance of every operand when it occurs. This situation has

a quantifier last and a true consumption condition for each operand.

Our model supports consumption policies that cannot be defined in existing

composite event languages. These consumption policies take place when different

operands have different consumption conditions or when the consumption

conditions are not true or false.

The situation increase-decrease is detected for every pair of stock quotes where the first quote

increases and the second quote decreases during a trading day (lifespan). This situation is defined

using the sequence operator. The first operand (stock quote increases) has a quantifier each and a

false consumption conditions in order to "remember" all the increases in the stock. The second

operand (stock quote decreases) has a quantifier last and a true consumption conditions in order to

consider only the last decrease and to avoid the multiple detection of the same pair. All pairs a re

reported at the end of the lifespan.

 operator = "sequence"

 detection mode = "differed"

 lifespan = “trading_day”

 first operand = event: "stock-quote" as: "first-quote"

 threshold: "change > 0"

 quantifier: "each"

 consumption condition: "false"

 second operand = event: "stock-quote" as: "second-quote"

 threshold: "change > 0"

 quantifier: "last"

 consumption condition: "true"

Figure 14 – example of consumption phase

20

The situation high-increase occurs if a stock increases and has a volume that is higher in at least

20 points that the volume it had in the beginning of the trading day. This situation is defined using

the operator sequence and a condition that imposes that the two quotes that trigger it have the same

symbol and that the second quote is higher in more than 20 points than the first. The first operand

has a quantifier strict first and a consumption condition false that imposes that only the first quote

in the lifespan is considered for situation detection. The second operand has a threshold conditions

that imposes that it increases, a quantifier last, an override condition true, and consumption

condition true that impose that only the (currently) last quote is considered for situation detection

and that each quote is considered only once.

 operator = "sequence"

 detection mode = "immediate"

 lifespan = “trading_day”

 first operand = event: "stock-quote" as: "first-quote"

 quantifier: "strict-first"

 consumption condition: "false"

 second operand = event: "stock-quote" as: "second-quote"

 threshold: "change > 0"

 quantifier: "last"

 consumption condition: "true"

 override condition: "true"

 condition = "first-quote.symbol = second-quote.symbol and

 first-quote.volume > second-quote.volume + 20 "

Figure 15 – example of consumption phase

2.3.4. Nested situations

The situation manager triggers an inferred event when it detects a situation. An

inferred event, as any other event, can be used as operand in other situations. This

capability enables the definition of nested situations – situations that are based on

concrete and inferred (other situations) events. The inferred event is denoted an

inner situation. Nested situations are roughly equivalent to operator composition

[7][18] in the sense that a nested situation has an inferred event, that is triggered

as a result of event composition as one of its operand. However, nested situations

do not require that the same lifespan and operands’ (events’) selection and

consumption policies are applied on the nested and inner situations. An example

of situation nesting is presented figure 16.

21

A broker wishes to sell a stock if it has a decrease tendency and low tradability in a trading day.

Situations that detected both cases are defined in figure 12. The situation sell-stock is a nested

situation, based on the situations defined in figure 12. It correlates inferred events detected by the

inner situations and checks if they both occurred on the same trading day.

 operator = "all"

 detection mode = "immediate"

 lifespan = “trading_day”

 repeatMode = “once”

 first operand = event: "low-tradability"

 quantifier: "first"

 second operand = event: "decrease-tendency"

 quantifier: "first"

 condition = " low-tradability.symbol = decrease-tendency.symbol"

Figure 16 – example of a nested situation

2.4. Key Definition

Key is used to perform semantic matching of different events, by attribute’s

value. This is similar (semantically) to equi-join in relational databases.

A key denotes a semantic equivalence among attributes that belong to different

events. For example the stock-exchange attribute in the stock-quote event, the

stock-exchange attribute in the trade-start event, and the stock-exchange attribute

in the trade-end event are semantically equivalent, in the sense that they refer to a

stock exchange symbol.

Keys are used to match different event instances that refer to the same entity (New

York stock exchange is an example of an entity that is referred by the stock-

exchange attribute). A key divides a situation's detection process to numerous

separate independent detection processes (denoted partitions), one partition for

every group of semantically equivalent event instances. The partitioning can be

preformed in the lifespan level, denoted global partitioning; in the situation level,

denoted local partitioning; or in both levels.

Global partitioning designates the partitioning of the situation's lifespan according

to the values of the attributes defined by the dividing key, called a global key. If

global partitioning is applied, a new lifespan is opened for every group of

semantically equivalent event instances according to the lifespan definition, thus

initiator and terminator events of one partition are not influenced by the existence

22

of open lifespans in other partitions. Moreover, an event instance that is associated

with a situation operand is considered to be a candidate of the situation (if it

satisfies the operand's threshold conditions) only in open lifespans that were

initiated by an initiator that is semantically equivalent to the new event instance.

Note that a global key must define a semantic equivalence among all the events

that participate in the situation (i.e. initiators, terminators and operands).

Local partitioning designates the partitioning of the situation within a lifespan

according to the values of the attributes defined by the dividing key, called a local

key. If local partitioning is applied, a separate detection process is preformed for

every group of semantically equivalent event instances according to the situation

selection strategy (selection phase), composition strategy (detection phase) and

consumption strategy (consumption phase). The decisions that are taken in each

phase of the situation composition in one partition (i.e. which candidate to select?

is the situation detected? which candidates to consume?) are not influenced by the

existence of candidates in other partitions. Note that local partitioning is different

from equality conditions on the situation operands, in the sense that it applies the

consumption and selection policies to each partition separately. A local key

defines a semantic equivalence among all the situation's operands.

The key symbol defines a semantic equivalence among stock-quote, bond-quote, and option-quote

events using the symbol attribute. The key stock-exchange defines a semantic equivalence among

stock-quote, bond-quote, option-quote, trade-start, and trade-end events using the stock-exchange

attribute. The situation stock-collapse occurs if there are less than three decreases in a trading day.

The stock-exchange key globally partitions this situation, thus a different lifespan is opened for

every trading day in a different stock exchange. The symbol key locally partitions this situation,

thus a different detection process is preformed for every symbol (company) and for every trading

day.

 operator = "atmost 3"

 detection mode = "deferred"

 lifespan = "trading day"

 global key = "stock-exchange"

 local key = "symbol"

 operand = event: "stock-quote"

 threshold: "change > 0"

 quantifier: "each"

Figure 17 – example of key definition

23

The set of keys ∑K is a finite set ∑K = {K1, K2, …, Kn}, n ≥ 0. A key K is a finite set of pairs

consisting of an event and one of its attributes. K = {eventAtt1, eventAtt2, …, eventAttn}, n ≥ 2. A

pair of an event and one of its attributes eventAtt is a tuple eventAtt = (eventId, attId) where

eventId is an event identifier and attId is an attribute identifier such that

1. ∀ K ∈ ∑K, ∀ eventAtt ∈ K, ∃ E ∈ ∑E : E.id = eventAtt.eventId ∧ ∃ att ∈ E.atts : att.id =

eventAtt.attrId;

2. ∀ K ∈ ∑K, ∀ eventAtti, eventAtt j ∈ K, i ≠ j : eventAtti.eventId ≠ eventAttj.eventId; and

3. ∀ K ∈ ∑K, ∀ eventAtti, eventAtt j ∈ K, i ≠ j : typeOf(eventAtti.attId) = typeOf(eventAttj.attId)

where typeOf is a function that returns the type of the specified attribute.

Figure 18 – formal definition of key

The set of situation definitions ∑S is a finite set ∑S = {S1, S2, …, Sn}, n ≥ 0. A situation S is a tuple

S = (eventId, operands, lifespanId, cond, detectionMode, globalKeys, localKeys) where

1. eventId is the internal event that is triggered by S such that ∀ S ∈ ∑S, ∃ E ∈ ∑E : E.id =

S.eventId

2. operands = {operand1, operand2, …, operandn}, n ≥ 0 is a finite bag of operands. An operand

operand is a tuple, operand = (eventId, threshold, quantifier, override, consumption) where

eventId is an event identifier such that ∀ S ∈ ∑S, ∀ operand ∈ S.operands ∃ E ∈ ∑E : E.id =

operand.eventId; threshold is a predicate over the operand’s event attributes; quantifier ∈

{first, last, each, strict first, strict last, strict each}; override is a predicate over the operand’s

event attributes; and consumption is a predicate over the operand’s event attributes.

3. lifespanId is a lifespan identifier such that ∀ S ∈ ∑S, ∃ L ∈ ∑L : L.id = S.lifespanId

4. cond is a predicate over the situation’s operands’ event attributes (includes the event algebra

operator)

5. detectionMode ∈ {immediate, differed, delayed}

6. globalKeys = {keyId1, keyId2, …, keyIdn}, n ≥ 0 is a finite set of key identifiers such that ∀ S ∈

∑S, ∀ keyId ∈ S. globalKeys, ∃ K ∈ ∑k , ∃ L ∈ ∑L: (K.id = keyId ∧ L.id = S.lifespanId ∧ (∀ init ∈

L.inits, ∃ eventAtt ∈ K.eventAttr : init.id = eventAtt.eventId) ∧ (∀ term ∈ L.terms, ∃ eventAtt ∈

K.eventAttr : term.id = eventAtt.eventId or term.id is an expiration interval) ∧ (∀ operand ∈

S.operands, ∃ eventAtt ∈ K.eventAttr : operand.eventId = eventAtt.eventId))

7. localKeys = {keyId1, keyId2, …, keyIdn}, n ≥ 0 is a finite set of key identifiers such that ∀ S ∈

∑S, ∀ keyId ∈ S. globalKeys, ∃ K ∈ ∑k : (K.id = keyId ∧ ∀ operand ∈ S.operands, ∃ eventAtt ∈

K.eventAttr : operand.eventId = eventAtt.eventId)

Figure 19 – formal definition of situation

24

Figure 20 – entity relationship diagram of the main elements of the situation definition language

25

3. Data structures and algorithms

Situation composition is the process applied to detect the occurrence of a situation

in reality. It is preformed in three phases: the collection phase, the detection

phase, and the consumption phase as described in section 2.3 - situation

definition. Each phase of the composition process performs different tasks;

however, all phases use the same data structure.

Section 3.1, data structures, describes the data structures that are used during the

composition process; section 3.2, algorithms, describes the algorithms that are

used in each phase of the composition process; section 3.3, best-case and worst-

case scenario, describes the best-case and worst-case performance of the

algorithms.

3.1. Data structures

The data structure, that is specific for a single situation, is classified to static and

dynamic data structure. The static part maintains the situation's meta-data

(definition), while the dynamic part represents knowledge about events that occur

in runtime and affect the composition process. The dynamic part of the data

structure consists of global and local partition tables that separate the event

instances that affect the composition process to partitions, as defined by the

station's global and local keys. The event instances, in each partition, are stored in

candidate lists.

The situation's data structure is described in figure 21.

• Global partition table - A mapping between global key values and global

partitions. A global key value is the information associated with event

instances in attributes that are semantically equivalent, as defined by the

situation's global key. A global partition contains open lifespans that have

been initiated by events with a global key value that is associated with the

global partition. If global partitioning (i.e. global key) is not defined, then

there is a single global partition that holds all the open lifespans of the

situation.

• Local partition table - A mapping between local key values and local

partitions in a specific lifespan. A local key value is the information

26

associated with event instances in attributes that are semantically

equivalent, as defined by the situation's local key. A local partition

contains a set of candidate lists that contains event instances that match the

local key value and are associated with the situation's operands. In a local

partition, each candidate list is associated with a single operand of the

situation and each operand is associated with a single candidate list. A

candidate list contains event instances that satisfy the operand's threshold

condition and where not consumed, sorted by the event's detection time. If

local partitioning (i.e. local key) is not defined, then there is a single local

partition that holds the candidate lists of the situation.

Figure 21 – situation’s data structure

3.2. Algorithms

The composition process makes changes in the dynamic data structures according

to event occurrences and the situation's meta-data. New event instances may

initiate and terminate lifespans (lifespan management algorithms) and may be

meta-data

global partition table

global partition

local partition table

global partition

local partition table local partition table

lifespan lifespan lifespan

candidate lists candidate lists

candidate lists

candidate lists

 dynamic part

 static part

27

added to the situation's candidate lists (collection phase algorithms). When the

dynamic data structure is updated, the situation detection process (detection phase

algorithms) can be applied. The detection process does not change the dynamic

data structure, however, if a situation is detected, candidates may be consumed

(consumption phase algorithms). When the dynamic data structure is updated

again (after the consumption phase) a new event instance can be processed.

process event (event: e)

for each situation s that e might terminate

 call terminate lifespan (s, e)

for each situation s that e is associated with one of its operand

 call collect instance (s, e)

for each situation s that e might initiate

 call initiate lifespan (s, e)

Figure 22 – algorithm for process event

A single event instance cannot take part in a situation in different roles (i.e. it can

not initiate and terminate the same lifespan, or participate in the situation and

terminate or initiate the situation's lifespan) thus the evaluation order of the

instance possible roles (initiation, termination, and collection) is irrelevant. The

evaluation order that is preformed in the process event algorithm satisfies this

requirement by giving priority to lifespan termination over instance collection.

3.2.1. Lifespan management algorithms

An event occurrence can result in the initiation of new lifespans and in the

termination of existing ones. The initiation and termination of lifespan changes

the dynamic part of the data structure. It can add or remove global partitions to the

global partition table of numerous situations, if such tables exist, and change the

amount of open lifespans for each situation, otherwise.

When an event instance that serves as a possible terminator occurs, the terminate

lifespan procedure is evaluated. It is called for each situation that is associated

with a lifespan that this event instance may terminate. This procedure removes

open lifespans, and all the data that is associated with them, from the dynamic part

of the situation's data structure and initiates the situation's detection process if the

situation's detection mode is deferred (i.e. the situation is detected at the end of its

lifespan). It tests the conditions for lifespan termination in all the situation's open

28

lifespans, if the situation does not have a global key, and open lifespans that

belongs to the global partition that is associated with the global key value, if the

situation defines a global key. An open lifespan is terminated if the event instance

satisfies the conditions for its termination (i.e. the event instance satisfies the

lifespan terminator's threshold condition and the lifespan matches the terminator's

quantifier).

terminate lifespan (situation: s, event: e)

gv ���������	
�����	�� e as defined by s global key

gp ������������������������������	�����gv in the global partition table of s

for each lifespan l in gp

if e satisfies the conditions for l termination

 remove l from gp

 if s detection mode is deferred

 call detect situation (s, l)

Figure 23 – algorithm for lifespan termination

When an event instance that serves as a possible initiator occurs, the initiate

lifespan procedure is evaluated. It is called for each situation that is associated

with a lifespan that this event instance might initiate. This procedure adds new

lifespans to the dynamic part of the situation's data structure. It tests the conditions

for lifespan initiation in the global partition associated with the event instance's

global key value, if the situation defines a global key or in the single global

partition that exist, if the situation does not define a global key. A new lifespan is

initiated if the event instance satisfies the conditions for its initiation (i.e. the

event instance satisfies the lifespan initiator's threshold condition and the

lifespan's correlation is satisfied).

initiate lifespan (situation: s, event: e)

gv ���������	
�����	�� e as defined by s global key

gp ������������������������������	������� in the global partition table of s

if e satisfies the conditions for lifespan initiation

 l ��	����	����

 add l to gp

Figure 24 – algorithm for lifespan initiation

29

3.2.2. Collection phase algorithms

An event instance may be a candidate (i.e. influence the situation detection) in

numerous situations, and for every situation it may be a candidate in each one of

its lifespans. When an event instance occurs, the add instance procedure

determines in which situations, in which global partitions (i.e. in which lifespans),

and in which local partitions an event instance is considered as a candidate. This

procedure is called for each situation for which the event is associated with one of

its operands. It checks if the event instance is a candidate in every lifespan that

belongs to the global partition that is associated with the event instance's global

key value, if the situation has a global key. If the situation does not define a global

key, it checks if the event instance is a candidate in all the lifespans of the

situation. For each lifespan, the event instance is added to the candidate list of the

operand that it is associated with its event class, if it satisfies the operand's

threshold conditions. Note that if a local key is defined, the event instance is

added (i.e. is a candidate) only to candidate lists that are in the local partition that

is associated with the instance's local key value, in the local partition table of each

lifespan. A situation detection process is performed, if the situation's detection

mode is immediate or delayed (i.e. situation occurrence is detected immediately)

and the event instance is added to at least one candidate list in the situation's

lifespan.

add instance (sitaution: s, event: e)

gv ���������	
�����	�� e as defined by s global key

lv ��������	
�����	�� e as defined by s local key

gp ������������������������������	�����gv in the global partition table of s

for each lifespan l in gp

 lp �����������������������������	������v in the local partition table of l

 for each operand op in s

 if e is associated with op in s

 if e satisfies the threshold conditions of op

 add e at the beginning of op candidate list in lp

 if s detection mode is immediate or delayed and e was added to a candidate list

 call detect situation (s, l, e)

Figure 25 – algorithm for collection phase

30

3.2.3. Detection phase algorithms

The detection process is preformed when a lifespan is terminated, if the situation

detection mode is deferred, or when a candidate event occurs, if the situation

detection mode is immediate or delayed. In the first case, the detection process is

applied to all local partitions that exist in the terminated lifespan. In the second

case, the detection process is applied only on the local partitions in which the

event becomes a candidate.

The detection process depends on the situation's operator. It applies different

methods to detect situation with different operators.

detect situation (situation: s, lifespan: l [,event: e])

lv ��������	
�����	�� e as defined by s local key or null if e is not specified

lp �����������������������������	������v in the local partition table of l if lv is not null

for each local partition lp in l, if lp is not null, or for lp

 call detect [operator] situation (s, lp)

Figure 26 – algorithm for detection phase

• Joining operators (all, sequence) – If the detection mode is immediate or

delayed then a backtracking algorithm is applied on local partitions in

which an event becomes a candidate; otherwise (detection mode is

deferred), it is applied on all local partitions. If the operator is satisfied, the

backtracking algorithm checks if the conditions applied by the operator,

the where clause, and the operands' quantifiers are satisfied; selects the

candidates that satisfy these conditions; and triggers the situation. This

algorithm is based on the fact that the condition defined in the where

clause can be converted to CNF (clause normal form). The CNF condition

can further be converted to another form such that a clause C*
i ,0<i≤k, k is

the number of operands, is a conjunction of all the clauses in the CNF

condition that reference operands that are defined before the ith operand

in the situation, and include a reference to the ith operand.

Note that if a CNF clause Ci references only a single operand, this clause

can be removed from the condition and be added to the operand's threshold

condition, if the operand's quantifier is relative.

This algorithm considers the conditions in their final form. It selects the

first, the last or each candidate of every operand as defined by the

31

operand's quantifier (see section 2.3.2, Detection phase). It selects a

candidate from the first operand, and then continues and selects a

candidate from each of the ascending operands. A candidate that is

selected for an operand k must satisfy the sub-condition for this operand

C*
k (also written sub-cond*

op where op is the kth operand). If there are no

candidates of the operand that satisfy the sub-condition, than the algorithm

backtracks to the previous operand and selects another candidate that is

associated with it. When a candidate is selected for every operand, an

internal event, that represents the situation, is triggered using the values of

the selected candidates. This algorithm considers only few combinations

of candidates that may cause a situation and saves a lot of computation

effort. It eliminates combinations of events that do not satisfy the

conditions for situation composition. It does so by eliminating a

combination if a prefix of k events in the combination does not satisfy the

sub-condition C*
k.

A situation S is triggered when a sequence of three events E1, E2, and E3 occur. Each event has a

single attribute named x. E1 is the first operand of S, E2 is the second, and E3 is the third. The

situation S is triggered only if the condition specified in the where clause is satisfied.

The condition in its original form is

 E1.x > E2.x or (E1.x = E2.x and E2.x < E3.x and E3.x > 5)

The condition in a CNF form is

 (E1.x > E2.x or E1.x = E2.x) and (E1.x > E2.x or E2.x < E3.x) and

 (E1.x > E2.x or E3.x > 5)

 Where

 C1 ≡ (E1.x > E2.x or E1.x = E2.x)

 C2 ≡ (E1.x > E2.x or E2.x < E3.x)

 C3 ≡ (E1.x > E2.x or E3.x > 5)

The condition in its final form is

 (E1.x >E2.x or E1.x = E2.x) and (E1.x > E2.x or (E2.x < E3.x and E3.x > 5))

 Where

 C*1 ≡ true

 C*2 ≡ C1 ≡ E1.x >E2.x or E1.x = E2.x

 C*3 ≡ C2 ∧ C3 ≡ (E1.x > E2.x or E2.x < E3.x) and (E1.x > E2.x or E3.x > 5)

 ≡ (E1.x > E2.x or (E2.x < E3.x and E3.x > 5))

Figure 27 – example of condition resolution

32

• Counting operators (atmost, atleast, nth) - If the total weight of

candidates, satisfies the conditions applied by the operator (see section

2.3.2 Detection phase), a situation is triggered. A numerator totals the

weight of candidates in each local partition. It increases when a new

candidate is detected, and decreases when an existing candidate is

consumed. When the detection process is applied, the enumerator is

compared to the required number, as defined by the situation, and an

internal event is triggered, if the conditions are satisfied.

If the conditions for situation composition are defined in the where clause of

the situation, the backtracking algorithm that was described for joining

operators is preformed. However, internal events are not triggered when the

algorithm handles the last operand, but the candidates in the selection are

accumulated. An internal event is triggered if the total number of accumulated

candidate satisfies the counting operator.

• Absence operators (not, unless) - If there are no candidates that are

associated with the situation's absence operands then a situation is

triggered. A flag is raised if a candidate that is associated with an absence

operand is detected. After the flag is raised, event instances are ignored by

this situation thus no new candidates are considered. At the end of the

lifespan (recall that absence situation are always detected in the deferred

detection mode) an internal event is detected if the flag is not raised.

• Temporal operators (at, every, after) - A timer is used for the detection

of temporal situations. The timer triggers an internal event that represents

the situation, after the required time interval has passed. The request for

the time notification is preformed when the situation's lifespan initiates for

the at and every operators, when a candidate arrives for the after operator,

and when the timer notification occurs for the every operator.

33

detect joining situation (situation: s local partition: lp [,operand op] [,selection s])

if op is last operand

 s satisfies operator and conditions

 trigger internal event using s

 return true

else

 return false

else

 op ��	�����	���������������	��������lp if op is null

relative:

if op quantifier is relative first, relative last or relative each

 c first/last unselected candidate of op thus sub-cond*
op is satisfied by s ∪ c

 if not c

 if situation was triggered

 return true

 else

 return false

 if call detect joining situation (s ∪ c, lp, op, s)

 quantifier is first or last

 return true

 else

 goto relative

absolute:

if op quantifier is strict first, strict last, or strict each

 c first/last unselected candidate of op

if s ∪ c satisfied sub-cond*
op

 if call detect joining situation (s ∪ c, lp, op, s)

 quantifier is first or last

 return true

 else

 goto absolute

 else

 return false

 else

 return false

Figure 28 – algorithm for detection of situation with joining operator

34

3.2.3. Consumption phase algorithms

The consumption process is preformed when the detection phase is finished, if the

situation's detection mode is immediate or delayed. This process determines if

candidates that actually caused the situation detection can be considered again in

future detection processes. Since only a single detection process is applied if the

situation's detection mode is deferred (i.e. at the end of the lifespan), the

consumption process is applied only if the situation's detection mode is immediate

or delayed. Candidates that caused the situation are accumulated during the

detection process (i.e. when an internal event that represents the situation is

triggered by a selection of candidate s, the candidates in s are accumulated). When

the detection process is finished, the accumulated candidates are consumed if they

satisfy the consumption conditions of the operand that they are associated with.

Note that candidates are consumed and not event instance, that an event instance

that is a candidate in multiple global and local partitions can be consumed in some

partitions and not in others.

3.3. Best-case and worst-case scenarios

Situation definitions and reported event instances impact the performance

(performance measurements are discussed in section 4) of the situation manager

and the execution of the algorithms introduced in the previous section.

• A scenario where all reported event instances are not defined in Amit

results in discarding all the event instances before they are considered for

situation detection. The events are evaluated against a list of all event

types and then discarded. The complexity in this case is O(logEn) where

En is the number of event types to evaluate a single event instance.

• A scenario on which a situation has several operands with a quantifier

each and candidates that are never consumed (consumption condition is

false) or overridden (override condition is false); is detected at the

immediate detection mode; is relevant during a lifespan that is never

terminated; has a were condition; and affected by all event instances

results in exponential computation in the number of events. A new event

instance always triggers evaluation of the situations that compares it

35

against all existing candidates (in order to evaluate the where condition).

Since candidates are not consumed, a new event instance is checked

against all previous events. The complexity in this case is O(nop
*l) where n

is the number of event instance, op is the number of operands in the

situation, and l is the number of open lifespans where the situation is

relevant.

4. Performance measurements

The performance measurements goal is to estimate the incoming event rate that

the situation manager can handle and compare it with other event management

tools. A previous work that defines benchmarks of rules in active database [19]

does not cover the functionality of our language. The incoming event rate that is

required by an application varies among different applications. We identified

several factors [23] that influence the performance of the situation manager.

1. The number of parallel open lifespans in a computation

2. The number of candidates (i.e. partially processed event instance in the

situation manager that passed the threshold conditions and were not

consumed).

3. The number of detected situations. Situation detection triggers an internal

inferred event that is processed by the situation manager.

These factors differ from one application to the other. We defined several

scenarios that describe typical applications. The results of these scenarios provide

an estimation of the situation manager's performance in real life applications.

Section 4.1, scenarios, describes four scenarios. Section 4.2 results, describes the

results of these four scenarios.

4.1. Scenarios

We define a set of fourteen event types, {E1, E2, …, E14}, each event has a single

attribute X that has a discrete value distributed evenly between 1 and 10. These

events are used in order to define the situations in the scenarios. We defined ten

sets of 100,000 event instances that are used to evaluate the performance of the

situation manager.

36

Event Type Distribution

E1 0.2

E2 0.2

E3 0.1

E4 0.1

E5 0.1

E6 0.1

E7 0.1

E8 0.05

E9 0.02

E10 0.02

E11 0.0025

E12 0.0025

E13 0.0025

E14 0.0025

Table 1 – event distribution

These event instances' sets are generated randomly using the distribution detailed

in the table above.

4.1.2. Standby World

This is an empty scenario that does not define any situations. It gives an upper

bound on the performance of the situation manager (i.e. the event rate that the

situation manager can handle).

4.1.3. Noisy World

This is a light scenario that uses only low percentage (1%) of the event instances

in order to decide if a situation occurs. The situations are not complex (i.e. no

conditions, small number of lifespans are open simultaneously) and constructed

from a small number of events.

4.1.3. Filtered World

This is a filtering scenario that uses high percentage (80%) of the event instances

in order to decide if a situation occurs. However, high percentages of these

instances (80%) are not relevant (i.e. do not satisfy the threshold conditions). The

37

situations are complex (i.e. conditions are applied, many lifespans are open

simultaneously) and some are based on other situations (i.e. on internal events).

4.1.4. Complex World

This is a heavy scenario that uses high percentage (80%) of the event instances in

order to decide if a situation occurs. The situations are complex (i.e. conditions

are applied, many lifespans are open simultaneously), some based on other

situations (i.e. on internal events).

Situation s1

 operator = "sequence"

 detection mode = "immediate"

 first operand = event: "E12"

 second operand = event: "E13"

 lifespan = initiator: "E11" correlation: "ignore"

 terminator: "E14" quantifier: "each"

Situation s2

 1operator = "after 1000"

 detection mode = "immediate"

 first operand = event: "E13"

 lifespan = initiator: "startup"

 no terminator

Situation s3

 operator = "all"

 detection mode = "deferred"

 first operand = event: "E13"

 second operand = event: "E14"

 local key : attribute: X

 lifespan = initiator: "E11" correlation: "add"

 terminator: "E12" quantifier: "each"

Figure 29 – noisy world scenario

1 S2 is detected 1000 milliseconds after an instance of E13 occurs

38

Situation s1

 operator = "sequence"

 detection mode = "immediate"

 first operand = event: "E1” threshold: "X > 7" alias: ”E1A”

 second operand = event: "E2" threshold: "X > 7"

 third operand = event: "E1" threshold: "X > 7" alias “E1B”

 condition = "E1A.X = E1B.X"

 lifespan = initiator: "E5" correlation: "ignore" threshold: "X=3"

 initiator: "E6" correlation: "ignore" threshold : "X<2"

 terminator: "E7" quantifier: "first" threshold: "X =7"

Situation s2

 operator = "atleast 5"

 detection mode = "immediate"

 first operand = event: "E2"

 global key : attribute: X

 lifespan = initiator: "E6" quantifier: "add" threshold: "X = 4"

 terminator: "E8" quantifier: "each" threshold: "X = 9"

Situation s3

 operator = "all"

 detection mode = "immediate"

 first operand = event: "S1"

 second operand = event: "E3" threshold: "X > 7"

 third operand = event: "E4" threshold: "X > 7"

 condition = "E3.X = E4.X"

 lifespan = initiator: "E5" correlation: "add" threshold: "X = 1"

 terminator: "E6" quantifier: "last" threshold: "X = 2”

Situation s4

 operator = "not"

 detection mode = "deferred"

 first operand = event: "S2"

 lifespan = initiator: "E3" correlation: "add”

 terminator: "E4" quantifier: "first"

Figure 30 – filtered world scenario

39

Situation s1

 operator = "sequence"

 detection mode = "immediate"

 first operand = event: "E1” alias: ”E1A”

 second operand = event: "E2"

 third operand = event: "E1" alias “E1B”

 condition = "E1A.X = E1B.X"

 lifespan = initiator: "E5" correlation: "ignore"

 initiator: "E6" correlation: "ignore"

 terminator: "E7" quantifier: "first"

Situation s2

 operator = "atleast 5"

 detection mode = "immediate"

 first operand = event: "E2"

 global key : attribute: X

 lifespan = initiator: "E6" quantifier: "add"

 terminator: "E8" quantifier: "each"

Situation s3

 operator = "all"

 detection mode = "immediate"

 first operand = event: "S1"

 second operand = event: "E3"

 third operand = event: "E4"

 condition = "E3.X = E4.X"

 lifespan = initiator: "E5" correlation: "add"

 terminator: "E6" quantifier: "last"

Situation s4

 operator = "not"

 detection mode = "deferred"

 first operand = event: "S2"

 lifespan = initiator: "E3" correlation: "add”

 terminator: "E4" quantifier: "first"

Figure 31 – complex world scenario

40

4.2. Scenarios' results

Measurements were performed on a Pentium IV 1.4 Ghz machine running

windows 2000. The measurements started after the situation manger loaded the

definitions and the set of event instances was generated (in memory). In runtime,

the “client” thread (a java program that use the situation manager) sent event

instances (one by one) to the situation manager by calling the situation manager’s

API. The “client” thread yielded (the CPU) every 1000 sent events. Three

parameters were monitored:

1. Number of incoming event and detected situations (i.e. number of processed

events)

2. Execution time.

3. Internal execution statistics.

Table 2 presents the average results of performance measurements of 10

executions, each one with 100,000 events. The high number of processed event

eliminates the affect of the sequence in which the events occurred (which is

random in our case) on the measured results. The results are detailed in the table

below.

 Standby world Noisy world Filtered world Complex world

External events 100000 100000 100000 10000

Detected situations 0 112 30435 139111

Events + Situations 100000 100112 130435 239111

Performance Time (ms) 1372 1742 16503 124319

External events / sec 72887 57406 6060 804

Detected situations /sec 0 64 1844 1118

Events / sec 72887 57470 7903 1923

Candidates 0 1077 120662 2350754

Access to event information0 992 1289131 11302695

Condition Performed 0 0 833487 15299472

Initiated lifespans 0 389 12543 36423

Terminated lifespans 0 387 11524 36280

Table 2 - performance measurements results

41

The performance measurements results show that

a. The situation manager upper limit is about 70,000 events per second. This

event rate is achieved if none of the incoming event instances are classified to

events that take part in situation composition.

b. The lower bound is about 2,000 evens per second. This is considered as high

performance relative to other solutions in the event

composition/correlation/management spaces.

c. The factors that significantly affect performance are

1. The average number of parallel open lifespans (the situation manager’s

detection process is performed separately for each lifespan).

2. The number of relevant event instances (i.e. partially processed event

instances that passed the threshold conditions and were not consumed). A

candidate represents a relevant event instance within a lifespan. A high

number of candidates result from high number of relevant event instances,

high number of parallel open lifespans, or both.

d. There is not a decisive�association between the number of candidates, the

number of open lifespan, and the number of relevant events to the number of

detected situations. The number of detected situations is also influenced�by the

situation’s operator and where condition.

5. Related Work

We review prototypes and systems that support definition of composite events.

These include prototypes from the active database domain, systems from the

network management (i.e. event correlation) domain, and workflow management

domain. We compare the situation manager definition language to the related

work and show how it extends their semantics.

5.1. Active Database

Contemporary commercial systems do not support composite events. However,

they support triggers as specified in the SQL3 standard [25]. A trigger in SQL3 is

an ECA rule that is activated by a database state transition and has an SQL3

predicate as a condition and a list of SQL3 statements as an action. Commercial

42

).),(()(

and)(where])[(])[(
1

EErelativerelativeErelative

EErelativehErelativehErelative

1ii

i

i

1i

−

∞=

=

=

==+ Υ

databases that support triggers include DBMS products such as DB2, Oracle,

Sybase and Informix.

5.1.1. ODE

ODE [18] is an active object oriented database that has been developed in Bell

Laboratories and supports the specification and detection of composite events.

Primitive events in ODE are triggered by the database and include object state

events, method execution events, time events and transaction events. Composite

events are specified as event expressions. An event expression is a mapping from

a history h (sequence of primitive events) to another history, a subset of h,

comprising of the points at which the event expression is satisfied. An event

expression can be NULL, any primitive event a, or an expression formed using the

operators ∧ , !, (not), relative and relative+. The semantics of ODE event

expressions are defined as follows (E and F denote event expressions):

1. E[null] = null for any event E, where null is the empty history.

2. NULL[h] = null.

3. a[h], where a is a primitive event, is the maximal subset of h composed of

all the occurrences of event a.

4. (E ∧ F)[h] = E[h] ∩ F[h].

5. (!E)[h] = (h – E[h]).

6. realtive(E, F)[h] are the event occurrences in h, at which F is satisfied,

assuming that the history started immediately following some event

occurrence in h at which E takes place. Formally, relative(E, F)[h] is

defined as follows. Let Ei[h] be the ith event occurrence in E[h]; let hi be

obtained from h by deleting all events that occurred before Ei[h]. Then

relative(E, F)[h] = Υi ihF][where i ranges from 1 to the cardinality of

E[h].

7.

ODE implements composite event detection using finite state automata. This is

because composite events can be expressed as regular expressions.

Amit extends the semantics of ODE in several aspects:

1. ODE does not support the operators atleast, atmost, nth, at, after, and every.

43

2. ODE cannot express the information reported with detected composite events,

thus limiting the expressiveness of nested situation.

3. ODE has limited expressive capabilities for the definition of time intervals

during which event composition is relevant using the operator relative(E, F)

that designates the occurrence of F after an occurrence of E (initiator) and

before(E) that designates any event before E (terminator).

4. ODE does not support selection of event instances (quantifiers)

5. ODE does not support reuse policies of event instances (i.e. events are always

consumed).

6. ODE makes limited usage of the semantic information that is reported with

events during event composition. It allows some filtering conditions (masks)

and equality conditions (parameters) on events that participate in an event

expression (composite event).

Tables 3 shows how ODE operators can be expressed in Amit

5.1.2. Snoop

Snoop [7] has been developed at the University of Florida. It is an expressive

event specification language for active database, implemented in the Sentinel

object oriented database [5]. Events in Snoop are atomic occurrences and include

database events, explicit (also called external or abstract) events and temporal

events. Events in Snoop, both primitive and composite, have a schema of

parameters (attributes) associated with them. This schema describes additional

information on the event that can be used only during the condition part of the

ECA rule. A composite event in Snoop is defined by applying an event operator to

component events that are either primitive events or composite ones.

Consequently, an event is a function from the time domain onto the boolean

values. Snoop supports the disjunction, conjunction and sequence operators in

addition to the following operators.

1. Any(m, E1, E2, … En), where m ≤ n, occurs when m distinct events out of

the n events occur. Any(m, E*) specifies m distinct occurrences of an event

E.

2. The aperiodic event A(E1, E2, E3) is signaled each time E2 occurs during

the closed interval defined by the occurrence of E1 and E3. The event

44

A*(E1, E2, E3) occurs only once when E3 occurs and accumulates the

parameters for each occurrence of E2.

3. The periodic event P(E1, t[:parameters], E3) where t[:parameters] is a

constant time increment with optional parameter list. It occurs every t time

units, starting when E1 occurs and ending after E3, and collects the

specified parameters. The commutative version of P, P*(E1,

t[:parameters], E3) occurs only once when E3 occurs. The specified

parameters are collected and accumulated at the end of each period and

made available when P* occurs.

Snoop introduces the notation of parameter contexts (analogous to the notation of

consumption modes introduced in HiPAC [11]) for the purpose of capturing

application semantics for computing the parameters (of composite events) when

they are not unique. Four contexts are introduced.

1. Recent: In this context, only the most recent occurrences of each Ei that

have started the parameter computation are taken into account for

computing the parameters of E. When E occurs, the composite event is

signaled and all the occurrences that are used in the parameter relation are

deleted.

2. Chronicle: In this context, instances of component events are taken into

account in the chronological order in which they occur. When E is

signaled, its parameters are computed using the oldest instance of each

component event, and the parameters of these instances are deleted.

3. Continuous: In this context, each occurrence of an event that marks the

beginning of the interval of an event expression is considered a potential

candidate for stating a parameter set computation.

4. Cumulative: In this context, parameters of E include the parameters of all

the occurrences of each component event. Whenever E is signaled, all the

entries in the parameter relation associated with each component event are

deleted.

Snoop uses event trees and event graphs in order to detect composite events. For

each composite event an event tree is defined, and these trees are merged to form

an event graph.

45

To illustrate parameter contexts, consider the composite events A = any(2, E1, E2) ; E3 where E1,

E2, E3 are primitive events. Also consider the following sequence of event occurrences e21, e12, e13,

e24, e15, e36, e38, e29 where eij is an occurrence of event i at time j. In the recent context A occurs at

time 6 and includes the parameters of event instances e15, e24, and e36. In the chronicle context A

occurs twice. At time 6 with the parameters of event instances e12, e21, and e36; and at time 8 with

the parameters of event instances e13, e24, and e38. In the continuous context A occurs four times,

all at time 6. The first occurrence of A has the parameters of event instances e12, e21, and e36; the

second occurrence has the parameters of e12, e24, and e36; the third one has the parameters of e13,

e24, and e36; and the last one includes the parameters of e15, e24, and e36.

Figure 3 – example of snoop’s parameter contexts

Amit extends the semantics of SNOOP in several aspects:

1. Snoop does not support the operators atleast, atmost, nth and unless.

2. Snoop has limited expressive capabilities for the definition of time intervals

during which event composition is relevant using the operators A, A*, P, and

P* in association with a parameter context. The lifespan element of the

situation manager’s definition language covers all these possibilities and

enables the definition of time intervals (e.g. the lifespan that is presented in

figure 7) that cannot be expressed in snoop.

3. Snoop’s parameter contexts describe some decision possibilities for event

selection (which of the candidate events that can trigger the situation, actually

triggered it) and reuse (consumption). However, Snoops cannot express all

possibilities of event selection and reuse policies that are expressed in Amit

using a combination of a quantifier and a consumption condition. The ability

to define different quantifiers and consumption conditions for each operand

(in contrast to Snoop in which the parameter context is defined globally for

the composed event) and the ability to evaluate event information in order to

decide on the consumption policy (in contrast to snoop) enables to express

Snoop’s recent, chronicle, and continuous parameter contexts in Amit along

with additional reuse and consumption policies (e.g. the reuse and

consumption policies of the situations that are presented in figures 14 and 15).

4. Snoop cannot use the semantic information reported with events during event

composition. This information is widely used in Amit to impose event filtering

(operand’s thresholds conditions), to impose reuse policies (override and

consumption conditions), to partition semantically situation detection (keys),

to decide on lifespan’s initiation and termination (initiators and terminators

46

thresholds conditions) and to impose additional conditions in the situation

level (situation’s where condition). Snoop, as other tools, assume that filtering

(conditions) will be performed later (i.e. in the condition phase of the ECA

rule). In addition to the inadequacy of this assumption, it should be noted that

the only way to achieve the equivalent of simultaneous composition and

content filtering in current tools is a two-phased process: phase one –

composition that generates all the combinations; phase two –filtering on the

results of phase one. The two-phased approach may be inefficient when the

number of detected situations is much smaller relative to the number of the

combinations that are produced in phase one. Furthermore, the number of

combinations produced in phase one can be exponential. The ability to

combine composition and filtering is a property that it improves the

performance in the general case, and enables the detection of situations that

are not practically feasible in other solutions, in extreme cases.

Tables 4,5, and 6 show how Snoops operators in the recent, chronicle and

continuous parameter contexts can be expressed in Amit. The cumulative

parameter context can not be expressed in Amit using primitive operators.

However, Amit has means to extend the language by using external functions;

Snoop’s cumulative parameter context functionality can be achieved by using a

function that accumulates situations that are defined with a quantifier each. Full

discussion of this extension is not in the scope of the paper.

5.1.3. General Model for Specification of the Semantics of

Complex Events

Zimmer and Unland suggest a meta-model for specification of the semantics of

complex events in active databases [36]. Events in this model are instantaneous,

atomic occurrences and include database events, external events and temporal

events.

The meta-model is based upon three independent dimensions: event instance

pattern, event instance selection, and event instance consumption. These

dimensions are further refined into sub-dimensions. The following paragraphs

describe these dimensions in further details.

47

1. Event instance pattern of a complex event type Ei describes at an abstract

level the event instance sequences that will trigger event instances of Ei. It

considers five aspects.

1.1. The event types whose instances must (or must not) occur in an

event instance sequence and the restrictions concerning their

order are defined by an event operator and its component event

types. The model provides the sequence, conjunction, disjunction,

negation and simultaneous operator. The simultaneous operator

requires that instances of the component event types occur

simultaneously.

1.2. A delimiter that restricts the number of event instances of a

component event type, which must occur to satisfy the event

instance pattern, can be specified.

1.3. Operator modes are used to define coupling and concurrency.

Coupling mode defines whether event instance patterns may be

interrupted by event instances not relevant to the event detection.

Concurrency mode defines whether the time interval associated

with the event instances, which cause a complex event to occur,

may overlap.

1.4. Context conditions define whether the values of a parameter of

different instances must be the same or different or without any

restrictions. Note that context conditions can only be imposed on

context parameters (transaction, process, user, application and

etc.)

2. Event instance selection defines which events are bounded to a complex

event. This selection is performed individually for each component event

and selects the first, the last or every (commutative) instance of the

component that satisfies the event operator. If the strong keyword is

specified, the first (last) instance of the component event is selected before

the system checks if it satisfies the event operator. Several composite

events can be triggered at once if more than one instance of an event

component is selected by specifying the combinations minimum or

combinations keywords. The mode combinations minimum defines that

48

only the minimum number of event instances required by the delimiter of

the event component are taken into account. The mode combination does

not impose this constraint and larger sets of event instances can be

considered.

3. Event instance consumption determines the points in time in which events

become invalid, i.e., they cannot be considered for the detection of further

complex events. Three different consumption modes can be specified

individually for each component event type.

• The shared mode does not delete any instance of the component

event.

• The exclusive mode deletes all instances of the component event

that were selected for the composition of the composite event.

• The ext_exclusive mode deletes all instances of the component

event that occurred before instances of the component events that

were selected for the composition of the composite event.

The inside or the outside keyword can be specified in conjunction with the

consumption mode to define the availability of event instance only inside or

outside a group of composite events that are triggered together.

Amit extends the semantics of the meta-model in several aspects:

1. The meta-model does not support the operators atleast, atmost, nth, unless, at,

after, and every.

2. The meta-model cannot express the information reported with detected

composite events, thus limiting the expressiveness of nested situation.

3. The meta-model cannot express time intervals during which event

composition is relevant. The terms initiator and terminator presented in the

model, refer to the first and last event in an event instance sequence; these

events are not used to temporal bound the event instance sequence.

4. The meta-model makes limited usage of the semantic information that is

reported with events during event composition. It is limited to information

reported by database events and only allows some equality conditions

(parameters) on components events (operands).

49

5. The meta-model supports three predetermined event instance reuse policies:

reuse all events, delete all events, and delete events that did not trigger a

composite event.

5.1.4. Additional Research Prototypes

Research on complex events for active databases is quite comprehensive and

additional research prototypes have been proposed. Most of these prototypes,

including EXACT [12], REACH [37], ACOOD [3], ROCK & ROLL [13],

Chimera [27], and REFLEX [28] do not offer new functionality. Other prototypes

offer new functionality by introducing new operators. These include HiPAC [11]

that introduces the closure operators, denoted E*, that is signaled when E has been

signaled one or more times within a transaction; SAMOS [17] that deals with the

detection of complex events using colored petri-nets and introduces the history

operator TIMES(n, E) that is signaled after each n occurrences of E; and NAOS

[9] that introduces the strict disjunction operator that triggers a composite event if

the component events occur exclusively. It also introduces some special operators

for cases, in which the events are themselves composite events. Additional

prototypes that are not based on event algebra but on functional programming and

real time logic include PFL [33], that is based on functional programming; JEM

[1][20][24] and FTL[31], that are based on temporal logic; and ADL [2].

5.2. Event Correlation

Network management tools identify network faults and send some type of alerts to

an event console. These tools often flood the event console with large quantities

of alerts. The system operator, who watches the event console, must look through

overabundance of data before he can identify the real problem and take a

corrective action.

Event correlation systems filter network-messages and correlate network data to

determine if a network problem occurred. Commercial event correlation solutions

include VERITAS NerveCenter [39], HP OpenView [31], SMARTS InCharge

[35],and Lucent NetworkFaultManagement.

Event correlation (network management) systems are designed to handle mainly

network events. Their expressive power is limited to the required functionality in

50

ODE Amit

E andsign F Operator = conjunction
First operand event: “E”
Second operand event: “F”

relative (E, F)

Lifespan initiator = event: “F” correlation: “ignore”
Operator = nth 1
Detection mode = immediate
First operand = event: “E”

relative + (E, F)

Lifespan initiator = event: “F” correlation: “add”
Operator = nth 1
Detection mode = immediate
First operand = event: “E”

E orsign F Operator = nth 1
First operand = event: “E”
Second operand = event: “F”

prior (E, F) Operator = sequence
First operand = event: “E1”
Second operand = event: “E2”

prior (E1, E2, … En) Operator = sequence
First operand = event: “E1”
Second operand = event: “E2”
…
Nth operand = event: “En”

sequence
(E1, E2, … En)

Operator = sequence
First operand = event: “E1”
Second operand = situation

Lifespan initiator = event: “E1”
Lifespan terminator = event: “E2”
Operator = not

Third operand = situation
Lifespan initiator = event: “E2”
Lifespan terminator = event: “E3”
Operator = not

…
Nth operand = situation

Lifespan initiator = event: “En-1”
Lifespan terminator = event: “En”
Operator = not

first Operator = nth1
Repeat mode = once

E|F Nested situations F where E is an operand
<n> E Operator = nth n

First operand = event: “E” quantifier: “each”
every <n> E Operator = nth n

First operand = event: “E” quantifier: “each” retain: “false”
F / E Operator = sequence

First operand = event: “E” quantifier: “first”
Second operand = event: “F” quantifier: “first”
Repeat mode = once

Table 3 – ODE operators expressed in Amit

51

Snoop Amit

Disjunction
E1 ∨ E2 ∨ … En

2Operator = nth 1
First operand event: “E1”
Second operand event: “E2”
…
Nth operand event: “En”

Conjunction
E1 ∧ E2 ∧ … En

Operator = all
First operand = event: “E1” quantifier: “last”
Second operand = event: “E2” quantifier: “last”
…
Nth operand = event: “En” quantifier: “last”

Sequence
E1 ; E2 ; … En

Operator = sequence
First operand = event: “E1” quantifier: “last”
Second operand = event: “E2” quantifier: “last”
…
Nth operand = event: “En” quantifier: “last”

Any(m, E1, E2, ... En) Operator = atleast m
First operand = event: “E1” quantifier: “last”
Second operand = event: “E2” quantifier: “last”
…
Nth operand = event: “En” quantifier: “last”

Any(m, E*) Operator = atleast m
First operand = event: “E” quantifier: “each”

A(E1, E2, E3) Lifespan initiator = event: “E1” correlation: “add”
Lifespan terminator = event: “E1” type: “discard”
Lifespan terminator = event: “E3” type: “terminate”
Operator = nth 1
First operand = event: “E2”

+A*(E1, E2, E3) Lifespan initiator = event: “E1” correlation: “add”
Lifespan terminator = event: “E1” type: “discard”
Lifespan terminator = event: “E3” type: “terminate”
Operator = nth 1
Detection mode = delayed
First operand = event: “E2”

P(E1, t, E3) Lifespan initiator = event: “E1” correlation: “add”
Lifespan terminator = event: “E1” type: “discard”
Lifespan terminator = event: “E3” type: “terminate”
Operator = every t

P*(E1, t, E3) Lifespan initiator = event: “E1” correlation: “add”
Lifespan terminator = event: “E1” type: “discard”
Lifespan terminator = event: “E3” type: “terminate”
Operator = every t
Detection mode = delayed

Table 4 – Snoops operators in recent parameter contexts expressed in Amit

2 An Amit template can be created to express a disjunction operator explicitly. Amit template is a

generic situation that is used to defined explicit situations based on parameters. A template for the

disjunction operator where the specific events in the disjunction are given as parameters simplifies

the definition of disjunction. Full discussion of templates in Amit is not in the scope of the paper.

52

Snoop Amit

Disjunction
E1 ∨ E2 ∨ … En

Operator = nth 1
First operand event: “E1”
Second operand event: “E2”
…
Nth operand event: “En”

Conjunction
E1 ∧ E2 ∧ … En

Operator = all
First operand = event: “E1” quantifier: “first”
Second operand = event: “E2” quantifier: “first”
…
Nth operand = event: “En” quantifier: “first”

Sequence
E1 ; E2 ; … En

Operator = sequence
First operand = event: “E1” quantifier: “first”
Second operand = event: “E2” quantifier: “first”
…
Nth operand = event: “En” quantifier: “first”

Any(m, E1, E2, ... En) Operator = atleast m
First operand = event: “E1” quantifier: “first”
Second operand = event: “E2” quantifier: “first”
…
Nth operand = event: “En” quantifier: “first”

Any(m, E*) Operator = atleast m
First operand = event: “E” quantifier = “each”

A(E1, E2, E3) Lifespan initiator = event: “E1” correlation: “ignore”
Lifespan terminator = event: “E3” type: “terminate”
Operator = nth 1
First operand = event: “E2”

A*(E1, E2, E3) Lifespan initiator = event: “E1” correlation: “ignore”
Lifespan terminator = event: “E3” type: “terminate”
Operator = nth 1
Detection mode = delayed
First operand = event: “E2”

P(E1, t, E3) Lifespan initiator = event: “E1” correlation: “ignore”
Lifespan terminator = event: “E3” type: “terminate”
Operator = every t

P*(E1, t, E3) Lifespan initiator = event: “E1” correlation: “ignore”
Lifespan terminator = event: “E3” type: “terminate”
Operator = every t
Detection mode = delayed

Table 5 – Snoops operators in chronicle parameter contexts expressed in Amit

53

Snoop Amit

Disjunction
E1 ∨ E2 ∨ … En

Operator = nth 1
First operand event: “E1”
Second operand event: “E2”
…
Nth operand event: “En”

Conjunction
E1 ∧ E2 ∧ … En

Operator = all
First operand = event: “E1” quantifier: “each”
Second operand = event: “E2” quantifier: “each”
…
Nth operand = event: “En” quantifier: “each”

Sequence
E1 ; E2 ; … En

Operator = sequence
First operand = event: “E1” quantifier: “each”
Second operand = event: “E2” quantifier: “each”
…
Nth operand = event: “En” quantifier: “each”

Any(m, E1, E2, ... En) Operator = atleast m
First operand = event: “E1” quantifier: “first”
Second operand = event: “E2” quantifier: “first”
…
Nth operand = event: “En” quantifier: “first”

Any(m, E*) Operator = atleast m
First operand = event: “E” quantifier = “each”

A(E1, E2, E3) Lifespan initiator = event: “E1” correlation: “add”
Lifespan terminator = event: “E3” type: “terminate” quantifier: “first”
Operator = nth 1
First operand = event: “E2”

A*(E1, E2, E3) Lifespan initiator = event: “E1” correlation: “add”
Lifespan terminator = event: “E3” type: “terminate” quantifier: “first”
Operator = nth 1
Detection mode = delayed
First operand = event: “E2”

P(E1, t, E3) Lifespan initiator = event: “E1” correlation: “add”
Lifespan terminator = event: “E3” type: “terminate” quantifier: “first”
Operator = every t

P*(E1, t, E3) Lifespan initiator = event: “E1” correlation: “add”
Lifespan terminator = event: “E3” type: “terminate” quantifier: “first”
Operator = every t
Detection mode = delayed

Table 6 – Snoops operators in continuous parameter contexts expressed in Amit

54

 (domain independent) solution that supports the fundamentals of a situation

definition we described earlier.

1. HP OpenView Event Correlation Services (ECS) [31] is designed to deal

with the problems associated with event storms in the telecommunication

environment. Events have a transit delay, which is the delay imposed by

the management network, and used to reorder incorrectly ordered events.

OpenView uses correlation circuits for the definition of event correlation.

A correlation circuit is a set of interconnected and appropriately

configured nodes, which define a logical function that represents an

operator in event algebra. OpenView supports nodes that represent the

conjunction, counting and unless operators. It also supports nodes for

event filtering and for holding and extracting event data.

2. SMARTS InCharge [35] correlates events by employing a coding

technique that matches alarms with signatures of known problems in real-

time. A set of events that represent symptoms of problems is treated as a

code that identifies the problem. A codebook is an optimal subset of

events that must be monitored to distinguish the problems of interest from

each other, while ensuring the desired level of noise tolerance.

Consequently a codebook is a correlation matrix of problems and events.

The events in the codebook are monitored and analyzed in real-time.

Distinction between problems is measured by the Hamming distance

between their codes, thus a decrease in the set of monitored events will

cause a decrease in the tolerance for observation errors. The supported

pattern on event history is a conjunction of events within a time window.

3. VERITAS NerveCenter [39] correlates network events. When a

predefined network condition is detected, NerveCenter stores the event

information in a finite state machine called an alarm. The alarm continues

to track the status of the object being monitored. The alarm waits for

subsequent events or issues polls to determine if the condition warrants

further action. To correlate and filter this data, NerveCenter relies on

configurable models of network and system behavior, called behavior

models, for each type of managed resource. A behavior model is a group

of NerveCenter objects that detect and handle a particular network or

55

system behavior. A typical behavior model consists of an alarm with all its

supporting polls and masks, though behavior models can have multiple

alarms. Any managed device can be associated with one or more behavior

models.

5.3. Workflow Management

Workflow management systems (WfMS) [22] are cooperative environments in

which multiple distributed processing entities cooperate in order to accomplish

tasks; processing entities enact workflows by reacting to and generating new

events.

Several research works [34][8][15] have proposed the use of event-condition-

action rules as provided by active database management systems as one of the

possible features of workflow execution; some of which use composite events to

detect complex workflow situations.

Commercial WfMS [41] and standard proposals [40] do not support event

composition. Although, event services (as, e.g., specified in CORBA Services

[10]) support the notion of event, these services are restricted to primitive events

and, typically, are hybrid in the sense that they rely on both, messages and events

as coordination paradigms.

56

6. Conclusion

This paper has presented the “situation manager” component of Amit. Amit has

been implemented in Java, and is being used as the core technology behind the e-

business Management Service offering of IBM Global Services. It is also being

integrated with various products and services of IBM. The situation manager was

designed to achieve both: high usability level and high performance (lower bound

of about 2000 events per second),

There is a substantial amount of further research that is being carried out now, and

it deals with areas such as: extending Amit operators from temporal to spatio-

temporal, adding uncertainty consideration, adding visualization and analysis tool

around Amit, adding inference mechanism to derive rules out of model, and

dealing with “deep” temporal issues.

Acknowledgement: Many of Amit ideas have been contributed by the wonderful

Amit team that consists of : David Botzer, Koby Chadash, Oren Kerem, Gil

Nechushtai, Royi Ronen, Ziva Sommer, Tali Yatzkar- Haham. The authors would

also like to thank the reviewers for their useful comments that helped to improve

the presentation of this paper.

57

References

1. Beck-M, Konana-P, Liu-G, Liu-Y, and Mok-A. "Active and real-time functionalities for electronic

brokerage design". International Conference on Advance Issues of E-Commerce and Web-Based

Information Systems, 1999.

2. Behrends-H. "Simulation-based Debugging of Active Databases." Proceedings of IEEE

International Workshop on Research Issues in Data Engineering: Active Databases Systems. Feb.

1994; Houston, TX, USA. IEEE Comput. Soc. Press, 1994. 172-180.

3. Berndtsson-M. "ACOOD: an Approach to an Active Object Oriented DBMS.." Master's thesis,

Department of Computer Science, University of Skovde, Sweden. 1991.

4. Botzer-D, Etzion-O, and Adi-A. "Semantic Event Model and its Implication on Situation

Detection." Proceedings of 8th European Conference on Information Systems. July 2000; Vienna,

Austria.

5. Chakravarthy-S. "Sentinel: an object-oriented DBMS with event-based rules." Proceedings of ACM

SIGMOD International Conference on Management of Data. May 1997; Tucson, AZ, USA. 1997.

572-575.

6. Chakravarthy-S and Kim-SK. "Resolution of time concepts in temporal databases." Information

Sciences, 80(1-2):43-89. 1994.

7. Chakravarthy-S, and Mishra-D. "Snoop: an expressive event specification language for active

databases." Data and Knowledge Engineering 14.1 (1994): 1-26.

8. Cicekli-NK, and Yildirim-Y. "Formalizing Workflows Using the Event Calculus". DEXA 2000:

222-231.

9. Collet-C, and Coupaye-T. "Composite events in NAOS." Proceedings of the 7th International

Conference on Database and Expert Systems Applications, DEXA. Sept. 1996; Zurich,

Switzerland. Springer Verlag, 1996. 244-253.

10. "Corba". http://www.corba.org

11. Dayal-U, Buchmann-A, and Chakravarthy-U. "The HiPAC Project." Active Database Systems:

Triggers and Rules for Advanced Database Processing Morgan Kaufmann, 1996. 177-206.

12. Diaz-O, and Jaime-A. "EXACT: an extensible approach to active object-oriented databases."

VLDB Journal. 6.4 (1997): 282-295.

13. Dinn-A, Paton-NW, Williams-MH, and Fernandes-AAA. "An Active Rule Language for ROCK &

ROLL." Proceedings of the 14th British National Conferenc on Databases. July 1996; Edinburgh,

UK. Springer Verlag, 1996. 36-55.

14. Etzion-O, Gal-A, and Segev-A. "Temporal support in active databases". Workshop on Information

Technologies & Systems. 1992: 245-254.

15. Etzion-O, and Kerem. "Reasoning about partially cooperative systems". Workflow Management

Systems and Interoperability. Springer Verlag. 1998.

16. Fernandez-R, and Diaz-O. "Reactive Behaviour Support: Themes and Variations." Proceedings of

2nd International Workshop on Rules in Database Systems. Sept. 1995; Athens, Greece. Springer-

Verlag, 1995. 69-85.

17. Gatziu-S, and Dittrich-KR. "Events in an active object-oriented database system." proceedings of

the 1st International Workshop on Rules in Database Systems. Sept. 1993; Edinburgh, UK Springer

Verlag, 1994. 23-29.

58

18. Gehani-NH, Jagadish-HV, and Shmueli-O. "Composite event specification in active databases:

model and implementation." Proceedings of 18th International Conference on Very Large Data

Bases. Aug. 1992; Vancouver, BC, Canada. Morgan Kaufmann, 1992. 23-27.

19. Geppert-A, Gatziu-S, and Dittrich-KR. "A Designer's Benchmark for Active Database Management

Systems: oo7 Meets the BEAST". Rules in Database Systems 1995: 309-326.

20. Guangtian-L, Mok-AK, and Konana-P. "A unified approach for specifying timing constraints and

composite events in active real-time database systems." Proceedings of 4th IEEE Real-Time

Technology and Applications Symposium. 1998; Denver, CO, USA. IEEE Comput. Soc. Press,

1998. 199-208.

21. Hurwitz-J. "Sorting out middleware." DBMS. 11.1 (1998): 10-12.

22. Jablonski-S, and Bussler-C. "Workflow Management. Modeling Concepts, Architecture, and

Implementation". International Thomson Computer Press, London 1996.

23. Jain R."The Art of Computer Systems Performance Analysis. Techniques for Experimental Design,

Measurement, Simulation, and Modeling" John Wiley & Sons. 1991.

24. Konana-P. Mok-AK, Chan Gun-L, Honguk-W, and Guangtian-L. "Implementation and

performance evaluation of a real-time e-brokerage system". Real-Time Systems Symposium, 2000.

25. Kulkarni-K, Mattos-NM, and Cochrane-R. "Active Database Features in SQL3." Active Rules in

Database Systems. Springer Verlag, 1999. 197-219.

26. McLeod-D, and Smith-JM. "Abstraction in databases." Proceedings of the Workshop on Data

Abstraction, Databases and Conceptual Modelling. June 1980; Pingree Park, CO, USA. ACM

Press, 1981. 19-25.

27. Meo-R, Psaila-G, and Ceri-S. "Composite Events in Chimera." Proceedings of 5th Conference on

Extended Database Technology (EDBT`96). March 1996; Avignon, France. Springer Verlag, 1996.

56-78.

28. Naqvi-W, and Ibrahim-MT. "EECA: An Active Knowledge Model." Proceedings of 5th

International Conference on Database and Expert Systems Applications. Sept. 1994; Athens,

Greece. Springer Verlag, 1994. 380-389.

29. Paton-NW. "ADAM: An Object-Oriented Database System Implemented in Prolog." Proceedings

of the 7th British National Conference on Databases. Cambridge University Press, 1989. 147-161.

30. Paton-NW, and Diaz-O. "Introduction." Active Rules in Database Systems. Springer Verlag, 1999.

3-27.

31. Sheers-KR. "HP OpenView event correlation services." Hewlett Packard Journal. 47.5 (1996): 31-

42.

32. Sistla-AP, and Wolfson-O. "Temporal Triggers in Active Databases". IEEE Transactions on

Knowledge and Data Engineering. 7.3 (1995): 471-486.

33. Swaup-R, Alexandra-P, and Carol-S. "PFL: An Active Functional DBPL." Active Rules in

Database Systems. Springer Verlag, 1999. 297-308.

34. Tombros-D, Geppert-A, and Dittrich-KR. "Semantics of Reactive Components in Event-Driven

Workflow Execution". CAiSE 1997: 409-422.

35. Yemini-SA, Kliger-S, Mozes-E, Yemini-Y, and Ohsie-D. "High speed and robust event

correlation." IEEE Communications Magazine. 34.5 (1996): 82-90.

36. Zimmer-D, and Unland-R. "A General Model for Specification of the Semantics of Complex

Events in Active Database Management Systems." C-LAB Report. 1998.

37. Zimmermann-J, and Buchmann-A. "REACH." Active Rules in Database Systems. Springer Verlag,

1999. 263-277.

59

38. "TIB®/Rendezvous(TM) software." TIBCO Software Inc. http://www.rv.tibco.com

39. "VERITAS NerveCentertm" VERITAS Software. http://eval.veritas.com/webfiles/docs/

NCOverview.pdf

40. "White Paper - Events" Workflow Management coalition.

http://www.wfmc.org/standards/docs/Workflow_events_paper.pdf

41. "Workflow Vendors Database". Workflow And Reengineering International Association.

htp://www.waria.com/databases/wfvendors-A-L.htm

60

Appendix A – Situation language DTD

<!ELEMENT amit (event | situation | lifespan | key)>

<!ELEMENT event (eventAttribute+)>

<!ATTLIST event

 name NMTOKEN #REQUIRED >

<!ELEMENT eventAttribute EMPTY>

<!ATTLIST eventAttribute

 name NMTOKEN #REQUIRED

 type (string | number | boolean) #REQUIRED >

<!ELEMENT situation (operator, situationAttribute+)>

<!ATTLIST situation

 name NMTOKEN #REQUIRED

 lifespan NMTOKEN #REQUIRED

 internal (true | false) 'false'>

<!ELEMENT operator (all | sequence | atleast | atmost | nth | not | unless | every | at | after)>

<!ELEMENT all (operandAll+ ,keyBy*) >

<!ATTLIST all

 detectionMode (immediate | deferred | delayed) 'immediate'

 where CDATA #IMPLIED

 repeatMode (once | always) 'always' >

<!ELEMENT operandAll EMPTY>

<!ATTLIST operandAll

 event NMTOKEN #REQUIRED

 as NMTOKEN #IMPLIED

 threshold CDATA #IMPLIED

 quantifier (first | last | each) 'first'

 quantifierType (absolute | relative) 'relative'

 override CDATA 'false'

 retain CDATA 'false' >

61

<!ELEMENT sequence (operandSequence , operandSequence+, keyBy*) >

<!ATTLIST sequence

 detectionMode (immediate | deferred | delayed) 'immediate'

 where CDATA #IMPLIED

 repeatMode (once | always) 'always' >

<!ELEMENT operandSequence EMPTY>

<!ATTLIST operandSequence

 event NMTOKEN #REQUIRED

 as NMTOKEN #IMPLIED

 threshold CDATA #IMPLIED

 quantifier (first | last | each) 'first'

 quantifierType (absolute | relative) 'relative'

 override CDATA 'false'

 retain CDATA 'false' >

<!ELEMENT atleast (operandAtleast+, keyBy*) >

<!ATTLIST atleast

 quantity NMTOKEN #REQUIRED

 detectionMode (immediate | deferred | delayed) 'immediate'

 where CDATA #IMPLIED

 repeatMode (once | always) 'once' >

<!ELEMENT operandAtleast EMPTY>

<!ATTLIST operandAtleast

 event NMTOKEN #REQUIRED

 as NMTOKEN #IMPLIED

 threshold CDATA #IMPLIED

 quantifier (first | last | each) 'each'

 quantifierType (absolute | relative) 'relative'

 override CDATA 'false'

 retain CDATA 'false'

 weight NMTOKEN '1'

 counted (true | false) 'true' >

62

<!ELEMENT atmost (operandAtmost+, keyBy*) >

<!ATTLIST atmost

 quantity NMTOKEN #REQUIRED

 detectionMode (immediate | deferred | delayed) #FIXED "deferred"

 where CDATA #IMPLIED >

<!ELEMENT operandAtmost EMPTY>

<!ATTLIST operandAtmost

 event NMTOKEN #REQUIRED

 as NMTOKEN #IMPLIED

 threshold CDATA #IMPLIED

 quantifier (first | last | each) 'each'

 quantifierType (absolute | relative) 'relative'

 override CDATA 'false'

 weight NMTOKEN '1'

 counted (true | false) 'true' >

<!ELEMENT nth (operandNth+, keyBy*) >

<!ATTLIST nth

 quantity NMTOKEN #IMPLIED

 detectionMode (immediate | deferred | delayed) 'deferred'

 where CDATA #IMPLIED

 repeatMode (once | always) 'once' >

<!ELEMENT operandNth EMPTY>

<!ATTLIST operandNth

 event NMTOKEN #REQUIRED

 as NMTOKEN #IMPLIED

 threshold CDATA #IMPLIED

 quantifier (first | last | each) 'each'

 quantifierType (absolute | relative) 'relative'

 override CDATA 'false'

 retain CDATA 'false'

 weight NMTOKEN '1'

 counted (true | false) 'true' >

63

<!ELEMENT not (operandNot+) >

<!ELEMENT operandNot EMPTY>

<!ATTLIST operandNot

 event NMTOKEN #REQUIRED

 as NMTOKEN #IMPLIED

 threshold CDATA #IMPLIED >

<!ELEMENT unless (operandUnless, operandNot ,keyBy*) >

<!ATTLIST unless

 where CDATA #IMPLIED>

<!ELEMENT operandUnless EMPTY>

<!ATTLIST operandUnless

 event NMTOKEN #REQUIRED

 as NMTOKEN #IMPLIED

 threshold CDATA #IMPLIED

 quantifier (first | last | each) 'first'

 quantifierType (absolute | relative) 'relative'

 override CDATA 'false'>

<!ELEMENT every EMPTY >

<!ATTLIST every

 interval NMTOKEN #REQUIRED >

<!ELEMENT at EMPTY >

<!ATTLIST at

 timePattern CDATA #IMPLIED >

<!ELEMENT after (operandAfter+, keyBy*) >

<!ATTLIST after

 correlate (add | ignore | replace) 'ignore'

 interval NMTOKEN #REQUIRED >

<!ELEMENT operandAfter EMPTY>

<!ATTLIST operandAfter

 event NMTOKEN #REQUIRED

 as NMTOKEN #IMPLIED

 threshold CDATA #IMPLIED >

64

<!ELEMENT situationAttribute EMPTY>

<!ATTLIST situationAttribute

 name NMTOKEN #REQUIRED

 type (string | number | boolean) #REQUIRED

 expression CDATA #IMPLIED >

<!ELEMENT lifespan (initiator , terminator, keyBy*)>

<!ATTLIST lifespan

 name NMTOKEN #REQUIRED >

<!ELEMENT initiator ((startup , eventInitiator*) | eventInitiator+)>

<!ELEMENT startup EMPTY >

<!ELEMENT eventInitiator EMPTY >

<!ATTLIST eventInitiator

 event NMTOKEN #REQUIRED

 as NMTOKEN #IMPLIED

 correlate (add | ignore) 'ignore'

 where CDATA #IMPLIED>

<!ELEMENT terminator ((eventTerminator+ , expirationInterval?) | expirationInterval |

noTerminator)>

<!ELEMENT eventTerminator EMPTY>

<!ATTLIST eventTerminator

 event NMTOKEN #REQUIRED

 as NMTOKEN #IMPLIED

 quantifier (first | last | each) 'each'

 terminationType (terminate | discard) 'terminate'

 where CDATA #IMPLIED >

<!ELEMENT expirationInterval EMPTY>

<!ATTLIST expirationInterval

 timeInterval NMTOKEN #REQUIRED

 terminationType (terminate | discard) 'terminate' >

<!ELEMENT noTerminator EMPTY>

65

<!ELEMENT key (eventKey+) >

<!ATTLIST key

 name NMTOKEN #REQUIRED

 type (string | number | boolean) #IMPLIED >

<!ELEMENT eventKey EMPTY >

<!ATTLIST eventKey

 event NMTOKEN #REQUIRED

 attribute NMTOKEN #REQUIRED >

<!ELEMENT keyBy EMPTY>

<!ATTLIST keyBy

 name NMTOKEN #REQUIRED >

