
1 

 

Amit - The Situation Manager 

ASAF ADI 

OPHER ETZION 

IBM Research Laboratory in Haifa 

Email: opher@il.ibm.com 
Phone: +972-4-829-6455 
Fax: +972-4-829-6116 

 

Abstract: 

This paper presents the “situation manager”, a tool that includes both a language and an efficient 

run-time execution mechanism, aimed at reducing the complexity of active applications.  This tool 

follows the observation that in many cases, there is a gap between current tools that enable to react 

to a single event (following the ECA: Event-Condition-Action paradigm), and the reality, in which 

a single event may not require any reaction, however the reaction should be given to patterns over 

the event history.  

The concept of situation presented in this paper, extends the concept of composite event, in its 

expressive power, flexibility, and usability.  This paper motivates the work, surveys other efforts 

in this area, and discusses both the language and the execution model. 
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1. Introduction 

In recent years, a substantial amount of work has been invested in systems that 

either react automatically to actual changes (reactive systems), or to predicted 

changes in their environment (proactive systems). These systems perform actions 

or signal alerts in response to the occurrence of events that are signaled when 

changes in the environment occur (or inferred). Such systems are used in a wide 

spectrum of areas and include command and control systems, active databases, 

system management tools, customer relationship management systems and e-

commerce applications.  

A central issue in reactive and proactive systems is the ability to bridge the gap 

between the events that are identified by the system and the situations to which 

the system is required to react. Some examples, from various areas, of situations 

that need to be handled are: 

•  A client wishes to activate an automatic “buy or sell” program, if a security that is traded 

in two stock markets, has a difference of more than five percent between its values in the 

markets, such that the time difference between the reported values is less than five 

minutes (“arbitrage”). 

•  A customer relationship manager wishes to receive an alert, if a customer’s request was 

reassigned at least three times. 

•  A groupware user wishes to start a session when there are ten members of the group 

logged in to the groupware server. 

•  A network manager whishes to receive an alert, if the probability that the network will be 

overloaded in the next hour is high. 

Figure 1 – example of possible situations 

There are a variety of tools that have been constructed to provide work 

environment for event driven applications.  The work described in this paper has 

been motivated by the observation that most of the contemporary tools can react 

to the occurrence of a single event. In many applications (including all the 

examples shown above) the customer wishes to react to the occurrence of a 

situation, which is a semantic concept in the customer’s domain of discourse.   

The syntactic equivalent of a situation is a (possibly complex) pattern over the 

event history. Thus, there is a gap between applications’ requirements and the 

capabilities of the supporting tools, resulting in excessive work. This paper aims 

at bridging this gap and saving the excessive work. It should be noted that the 
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“pattern over the event history” may in some cases be only an approximation of 

the actual situation, or express the situation with some level of uncertainty. In this 

paper we have made the simplified assumption of equivalence between these two 

terms. Some tools and some research prototypes approach this difficulty by 

providing a mechanism for the definition of composite events that are detected 

when a predicate over the event history is satisfied. However, previous research 

was focused on specific fields such as active database [7][18][36] and network 

management [31][35], and resulted in partial solutions that have limited 

expressive power and can only be used in these specific domains by systems to 

which they were specially designed. Moreover, these prototypes are not able to 

fully express some of the fundamentals of a situation definition: 

1. The events that can participate in a situation detection. 

2. The context during which a situation detection is relevant. 

3. The impact of the semantic information that is reported with events on 

situation detection (i.e. the semantic conditions that must be satisfied in 

order to detect a situation). 

4. The decision alternatives about the reuse of event instances that 

participated in situation detection. The decision is whether, and on which 

conditions, the event instance is “consumed” and cannot be used for the 

detection of other situations. 

In this paper we present the Situation Manager, a part of Amit (Active 

Middleware Technology) framework. Amit is both an application development 

and run-time control tool that is intended to enable fast and reliable development 

of reactive and proactive applications. The situation manager is a run-time 

monitor that receives information about the occurrence of events, detects the 

situations to which applications are required to react, and repots the detected 

situations to subscribers, typically other applications. It transfers the responsibility 

of situation detection from the application to a high level tool and bridges the gap 

between the application and the situations to which it requires to react. It provides 

a general solution (i.e. a solution that is practical in many domains) that can 

express the fundamentals of a situation definition that were describes above. 

The situation manager's high-level architecture is described in figure 2.
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Figure 2 – the situation manager’s high level architecture 

This paper reports on the situation concept and its implementation in the 

framework of the Amit project.  In section 2, we show the situation definition 

language; in section 3 we describe algorithms and data structures that are used by 

the situation manager during the detection process; in section 4 we present Amit’s 

performance measurements, and in section 5 we review some previous work 

aimed to define the semantics of composite events and compare it to Amit. 

Section 6 concludes the paper.  

2. The Situation definition language 

This section describes the features of the situation definition language, followed 

by examples from the domain of e-commerce application (stock market). The 

language is implemented using XML (Extensible Markup Language); its DTD 

(Document Type Definition), which describes a definition meta-data, is specified 

in appendix A. 

Section 2.1, event definition, describes the concept of event that is the basic 

building block of the situation language. Section 2.2, lifespan definition, describes 

the concept of lifespan, which is the temporal context during which situation 

detection is relevant. Section 2.3, situation definition, describes to concept of 

situation and how events, keys, and lifespans are used during situation 

composition. Section 2.4, key definition, describes the concept of key, a semantic 

equivalence among events. 
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2.1. Event definition 

An event is a significant (in some domains) instantaneous (happens in a specific 

point in time) atomic (happens completely or not at all) occurrence. We 

distinguish between concrete events and inferred events. Concrete events are 

those that happen in reality, usually as a result of a change in an object's state. 

Examples are: a person entering the meeting room; a light in the third floor of the 

building is turned on. Inferred events do not happen in the physical reality, but can 

be logically concluded by viewing the world's state (context) and the history of 

concrete event occurrences. An inferred event represents the occurrence of a 

significant situation in the physical reality. Examples are: all the invitees have 

already arrived to the meeting room (the meeting can start); the electricity load in 

the third floor is too high (electric outage may occur). 

We define two classes of events accordingly: 

•  External events are those, usually concrete events, which are pushed into 

the situation manager by external sources in runtime. These include 

sensors, other applications and human sources. 

•  Internal events are inferred events that are signaled by the situation 

manager when it detects the occurrence of a situation.  

An event, either external or internal, is represented by an event instance that 

contains the necessary information about the event. This information includes: the 

occurrence time of the event, data that is relevant to applications that react to the 

event, and additional data that is needed in order to decide if a situation (inferred 

event) has occurred.  

An event type describes the common properties of a similar set of event instances 

on an abstract level. It defines a schema of attributes that are instantiated in 

runtime when an event actually occurs and describes the information that is 

associated with the event. This information is pushed into the situation manager, if 

the event is external and is calculated by it, if the event is internal. 
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A trade-start event and a trade-end event occur when a trading day in a specific stock exchange 

starts or ends respectively. The schema of these events has one attribute: stock-exchange. 

A stock-quote event, a bond-quote event, and an option-quote event occur when a specified 

stock/bond/option is quoted in a specific stock exchange. The schema of these events has four 

attributes: stock-exchange, symbol, value, and change (in value since last quote). 

An example for a stock-quote event instance is a tuple (NasdaqNM, TEVA, $65.75, +4.89%) that 

was quoted on Nov 7, 2000, 15:25. Another example is a tuple (Berlin, TEVA, $62.85, +5.04%) 

that was quoted on Nov 7, 2000, 08:31. 

Figure 4 – example of event definition 

There is a distinction between the time in which the event happens in reality 

(event time) and the time it is detected by the system (detection time). This 

phenomenon may be a result of delays in event reporting that is inflicted by 

synchronization problems in distributed environment (network overload) and 

inaccuracies in sensor readings. This phenomenon and situations in which the 

situation manager, a sensor, or a network line is down, may result in the detection 

of situations that have not occurred in reality or in missing the detection of 

situations that occurred in reality [6][14].  The consequences of this issue are 

beyond the scope of this paper. 

The set of event types ∑E is a finite set ∑E = {E1, E2, …, En}, n ≥ 0. An event type E is a tuple E = 

(id, atts) where id is a unique identifier (event name) such that ∀ Ei, Ej ∈  ∑E, i�j : Ei.id ≠ Ej.id. and 

atts = {att1, att2, …, attn}, n ≥ 0, is a finite set of attributes. An attribute att is a tuple att = (id, 

type) where id is a unique identifier (attribute name) such that ∀ E ∈  ∑E, ∀ atti, attj ∈  E.atts, i≠j : 

atti.id ≠ attj.id and type is an attribute type, type ∈  {number, boolean, string}. 

Figure 5 – formal definition of event type 

2.2. Lifespan definition 

A lifespan is the temporal context during which situation detection is relevant. 

The lifespan is an interval bounded by two events called initiator and terminator. 

An occurrence of an initiator event initiates the lifespan and an occurrence of a 

terminator event terminates it. The initiator and terminator can be external events, 

internal events, or system events such as system startup and system shutdown. 

A lifespan type describes the common properties of a similar set of lifespans on an 

abstract level. It defines the set of events that can initiate the lifespan, the set of 

events that can terminate it, and the conditions for lifespan initiation and 

termination. Note that more than one lifespan of the same type may be open 
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simultaneously, if two initiator events have occurred before a terminator event, 

depending on the conditions for initiation. 

A lifespan has its own semantics, which may be independent from the semantics 

of a specific situation. In fact, a single lifespan can be a relevant context for the 

detection of multiple situations. Example is the lifespan trading-day, which starts 

when the event trade-start occurs and ends when the event trade-end occurs. This 

lifespan is a relevant time window for numerous situations. Moreover, the 

conditions for lifespan initiation and termination are not influenced by the specific 

situations that are relevant during the lifespan.  

The notion of lifespan was not formally defined in previous works. It was usually 

simulated by the operator sequence with three operands, whose first and last 

operands can be looked as an initiator and terminator of the time interval, in 

which the second operand, usually a complex event, can occur. Note that a 

simulation of lifespan using the sequence operator covers a single lifespan's 

initiation and termination policy. Snoop [7] defines the special operators A, A*, P, 

P* to emulate the semantics of lifespans. However, this emulation is only partially 

analogous to the notation of lifespan and has different semantics. It strongly 

couples the lifespan with a specific composite event and the decision whether to 

initiate or terminate the lifespan with a parameter context. Note that a parameter 

context covers a single lifespan's initiation and termination policy. However, in 

many cases such emulations cannot represent the notation of lifespan at all. 

A broker wants to run an automatic buy & sell in New York stock exchange only. He wants to 

detect situations during the NYSE trading day that requires the activation of such a program. 

•  Models that emulate the notation of lifespan using the sequence operator can only detect the 

required situations at the end of the trading day. However, at the end of the trading day, the 

knowledge that the situations represent is not relevant anymore. 

•  Models that emulate the notation of lifespan using special operators like Snoop's [7] A, A*, P, 

and P* can detect the required situations. However, they also detect composite events that 

represent situations that did not occur in reality because events signaling the starting and 

ending of trading days in different stock markets interleave. In this case all possible 

combinations of composite events must be detected and filtered in the condition part of the 

ECA rule. This results in a substantial superfluous computation.  

Figure 6 – example of lifespan management 
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2.2.1. Lifespan initiation 

A lifespan is initiated by an occurrence of an initiator when an event (either 

external or internal) occurs, or (if defined this way) when the situation manager 

starts to run (i.e. system startup). The lifespan type defines whether lifespan 

instances are initiated by system startup, by event occurrences or both and under 

which conditions (i.e. the lifespan's initiators). The conditions that an event 

instance must satisfy in order to initiate a lifespan include threshold conditions on 

the event instance itself and a correlation code that determines the lifespan 

duplication policy. There are two possible correlation codes: add and ignore.  If 

the correlation code is ignore, a new lifespan is initiated, only if a lifespan of the 

same type is not already open. If the correlation code is add, a new lifespan is 

opened while any existing lifespans remain open. Multiple values of the tuple that 

consists of event type, threshold conditions, and correlation code, may be defined 

for the same lifespan. This allows a lifespan to be initiated by different events and 

under different conditions, and enables the definition of lifespans that represent 

time intervals in which situations are relevant in reality. Note that an event 

occurrence can initiate only a single lifespan of the same type, although it may 

satisfy the conditions of more than one initiation tuple defined by that type. 
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A broker wishes to identify situations regarding IBM's stocks and options that are traded in the 

New York stock exchange. These situations are relevant in time intervals that start when an IBM's 

option is quoted or when IBM's stock is quoted, if no situation is already being evaluated in such a 

time interval. All open lifespans are discard if a situation is detected or 60 minutes after their 

initiation. 

  lifespan  = "example 7"  

  initiator = event: "option-quote" 

    where: "symbol = IBM and stock exchange = NYSE" 

    correlate: "add" 

  initiator = event: "stock-quote" 

    where: "symbol = IBM and stock exchange = NYSE" 

    correlate: "ignore" 

  terminator = event: "detected situation" 

    where: "symbol = IBM and stock exchange = NYSE" 

    termination type: "discard" 

    quantifier: "each" 

  terminator = expiration interval: "60 minutes" 

    termination type: "discard" 

 

Below is a scenario of event occurrences and their influence on lifespan initiation: 

1. An IBM's stock-quote event from New York initiates a new lifespan. 

2. An IBM's option-quote event from Berlin is ignored. 

3. An IBM's stock-quote event from New York is ignored. 

4. An IBM's option-quote event from New York initiates a new lifespan. 

Two instances of this lifespan, initiated by events one and four, are open simultaneously. The 

situation is detected in each one of these time intervals separately. When a situation is detected, 

with no importance to the lifespan in which it was detected, all open lifespans are discarded. 

Figure 7 – example of lifespan initiation 

2.2.2. Lifespan termination 

A lifespan remains open since its initiation time until it is either terminated by an 

occurrence of a terminator or it expires. The lifespan type defines whether 

lifespan instances are terminated after a period of time, by event occurrences, or 

both; under which conditions; and in case of multiple lifespan instances, which 

lifespans are terminated. The termination type also determines the conditions that 

an event instance must satisfy in order to terminate a lifespan. The conditions 

include threshold conditions on the event instance itself, a quantifier that 

determines which open lifespans are terminated, and a termination type that 
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specifies whether situations that are detected during the lifespan are discarded. 

There are three possible quantifier values: first, last and each.  If the quantifier is 

first, the oldest lifespan is terminated; if the quantifier is last, the newest lifespan 

is terminated; and if the quantifier is each, all the open lifespans are terminated.  

The termination type specifies if a situation that is detected during (or at the end 

of) the lifespan and was not reported should be discarded (discard termination 

type) or not (terminate termination type). 

Multiple instances of the tuple that consists of event type, threshold conditions, 

termination type, and quantifier, can be defined for the same lifespan. This allows 

a lifespan to be terminated by different events and under different conditions and 

makes it possible to define lifespans that represent time intervals in which 

situations are relevant in reality. 

The set of lifespan types ∑L is a finite set ∑L = {L1, L2, …, Ln}, n ≥ 0. A lifespan type L is a tuple L 

= (id, inits, terms) where id is a unique identifier (lifespan name) such that ∀ Li, Lj ∈  ∑L, i�j : Li.id 

≠ Lj.id;  inits = {init1, init2, …, initn}, n > 0, is a finite set of initiators; and terms = {term1, term2, 

…, termn}, n ≥ 0, is a finite set of terminators. An initiator init is a tuple init = (id, correlation, 

cond) where id is the identifier of the initiating event or the symbol startup (if the lifespan is 

initiated at startup) such that ∀ L ∈  ∑L, ∀ init ∈  L.inits, ∃ E ∈  ∑E : init.id = E.id or init.id = startup; 

correlation ∈  {add, ignore} is a correlation code; and cond is a predicate over the initiating event 

attributes. 

A terminator term is a tuple term = (id, quantifier, termType, cond ) where id is the identifier of the 

terminating event or an expiration interval (if the lifespan is terminated after a specific period of 

time) such that ∀ L ∈  ∑L, ∀ term ∈  L.terms, ∃ E ∈  ∑E : term.id = E.id or term.id is an expiration 

interval; quantifier ∈  {first, last, each},  termType ∈  {terminate, discard}is a termination type; 

and cond is a predicate over the terminating event attributes. 

Figure 8 – formal definition of lifespan 

2.3. Situation definition 

We have defined the inferred event (situation) to be the occurrence of a significant 

situation that does not happen explicitly in the physical reality, but can be 

logically inferred by viewing the world's state and the history of concrete event 

occurrences. A situation accordingly defines the set of events, both internal and 

external, that need to be evaluated, and the conditions they must satisfy in order to 

determine if a significant situation (inferred event) occurred in reality, and an 

internal event must be signaled. A situation also defines the information 



11 

 

associated with an internal event based on the information associated with the 

specific event instances that triggered it.  

Formally a situation S is a function from a set of event types ∑E to an event type 

E, where the domain is the set of events that need to be evaluated in order to 

decide if a situation occurred, and the range is the internal event that is triggered 

when the situation is detected. 

We use the term situation to refer to both an inferred event and its definition. 

However, the intent is usually clear from the context.       

The decision process, whether a situation occurred or not, is divided into three 

phases. Each phase is based upon one dimension of the situation definition. 

1. The collection phase - event instances that play any role in the situation 

are collected. 

2. The detection phase - event instances, whose occurrence entail detection of 

the situation, are selected. 

3. The consumption phase - event instances that participate in the situation 

are removed from the collection. 

Below is a short description of the decision process.  

While the lifespan is open, instances of events that participate in the situation are collected (1).  

If the conditions for situation occurrence have been met, then a subset of the event instances in the 

collection from those that caused the detection of the situation are selected (2). These instances are 

consumed and removed from the collection (3). 

Figure 9 – decision process for situation detection 

2.3.1. Collection phase 

A candidate is an event instance that has an impact upon the situation detection. 

In order to decide if a situation occurred in reality, all candidates must be 

monitored. Moreover, it is sufficient to base this decision upon these event 

instances only. The definition of this candidates’ collection should include the 

following information: 

1. The time interval during which the situation detection is relevant. 

A lifespan is the time interval during which a situation detection is 

relevant, thus, every situation is bounded to a lifespan type and only event 

instances that occur while the lifespan is open are considered for the 

situation. Note that if multiple lifespans of the same type are open 
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simultaneously, the situation is evaluated in each one separately, thus the 

detection of a situation in one lifespan does not influence the detection of a 

situation in other lifespans. Accordingly, the decision if an event instance 

is a candidate of the situation is done in each lifespan separately. 

2. The types of events that can participate in the situation. 

We defined a situation S as a function from a set of event types ∑E to an 

event type E. We call an event that in the domain of the situation function 

(i.e. an event that must be evaluated in order to decide if a situation occur) 

an operand of the situation. 

3. The conditions that event instances must satisfy in order to participate in the 

collection. 

An event instance that occurs while the lifespan is open must satisfy some 

conditions in order to be considered as candidate. These conditions are 

defined for each operand of the situation and may differ among operands. 

They include threshold conditions on the event instance itself and override 

conditions that determine the influence of the new candidate on other 

candidates of the operand. This means that existing candidates of the 

operand are removed from the collection if the new candidate satisfies the 

override conditions. 

The candidates in the collection are associated with the operand they belong to 

and form a separate candidate list for each operand. Note that a situation can have 

more that one operand of the same type. In this case the decision whether an event 

instance belongs to the candidate list of an operand is done separately for each 

operand, thus an event instance can be a candidate of one operand only, of some 

operands, or all operands. 
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The situation portal-collapse is influenced by the quotes of Yahoo and Lycos. It is detected if 

within a five minutes time window since the value of one of these companies increases, the value 

of Yahoo decreases in more than one percent in a single quote and the value of Lycos decreases in 

more than two percents in a single quote (i.e. high tendency for decreases). 

A new lifespan is opened for this situation whenever Yahoo or Lycos stock increases, thus 

multiple lifespans of this situation can be open simultaneously, in each one the situation is detected 

separately. 

This situation has two operands, both have the same event type: stock-quote. The first operand has 

a threshold condition that allows only quotes of Yahoo that decrease in more than one percent to 

be candidates. The second operand has a threshold condition that allows only quotes of Lycos that 

decrease in more than two percent to be candidates. 

Below is a scenario of event occurrences and their influence on the situation: 

1. A Yahoo stock is quoted with an increase in its value. A new lifespan is opened. 

2. A Lycos stock is quoted with a decrease of three percents in its value. The instance is a 

candidate of the second operand. 

3. A Lycos stock is quoted with an increase in its value. A second lifespan is opened.  

4. A Yahoo quote is quoted with a decrease of half percent in its value and ignored.  

5. A Yahoo quote is quoted with a decrease of two percents in its value. The instance is a 

candidate of the first operand in both lifespans but the situation is detected only in the first 

one. 

Figure 10 – example of collection phase 

2.3.2. Detection phase 

The decision process, whether a situation occurred, can be performed immediately 

when an event that is a candidate of the situation occurs, or when the lifespan of 

the situation is terminated. Similarly the report on the situation can be delayed 

until the lifespan terminates. These possibilities are captured by a detection mode 

that can have one of these values: 

1. Immediate - the conditions for situation detection are evaluated 

immediately when a new event occurs. The situation is reported 

immediately when it is detected. 

2. Delayed - the conditions for situation detection are evaluated immediately 

when a new event occurs. The situation, if detected, is reported at the end 

of the lifespan. 

3. Deferred - the conditions for situation detection are evaluated at the end of 

the lifespan. The situation, if detected, is reported immediately. 
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The decisions, whether a situation occurred and which event instance actually 

triggered it, are based upon a combination of an operator, a condition, and a set of 

quantifiers. The quantifiers designate a selection strategy when multiple 

occurrences of event instances of the same type that satisfy the conditions are 

possible. A quantifier is applied to every operand and has six possible values: 

first, strict first, last, strict last, each, and strict each. 

1. First - selects the first instance of the operand that satisfies the conditions. 

2. Strict first - selects the first instance of the operand if it satisfies the 

conditions. 

3. Last - selects the last instance of the operand that satisfies the conditions. 

4. Strict last - selects the last instance of the operand if it satisfies the 

conditions. 

5. Each - selects all the instances of the operand that satisfy the conditions. 

6. Strict Each - selects all the instance of the operand if all of them satisfy the 

conditions. 

Note that if event instances that satisfy the conditions cannot be selected for every 

operand, the situation may not be detected, depending on the situation’s operator. 

Our model supports numerous operators that are classified to several groups. 

1. Joining operators: all & sequence 

•  The operator all(E1, E2, …, Ek) designates a conjunction of events 

E1…Ek with no order importance. 

•  The operator sequence(E1, E2, …, Ek) designates an ordered 

conjunction of events E1…Ek where event Ei precedes event Ei+1. 
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The situation portal-collapse that was described in the previous example is defined using the 

operator all. 

  operator = "all" 

  detection mode = "immediate" 

  first operand = event: "stock-quote" 

    threshold: "symbol = YHOO and change = -1" 

    quantifier: "first" 

  second operand = event: "stock-quote" 

    threshold: "symbol = LCOS and change = -2" 

    quantifier: "first" 

Its lifespan is  

  initiator = event: "option-quote" 

    where: "symbol = YHOO or symbol = LCOS and change > 0" 

    correlate: "add" 

  terminator = expirationInterval: "5 minutes" 

The situation last-increase occurs if a stock increases at least two times within a lifespan. It is 

reported only once at the end of the lifespan with information based on the two last increases in the 

stock. This situation is defined using the operator sequence and a condition that imposes that the 

two quotes that trigger it have the same symbol. 

  operator = "sequence" 

  detection mode = "deferred" 

  first operand = event: "stock-quote"  as: "first-quote" 

    threshold: "change > 0"  

    quantifier: "last" 

  second operand = event: "stock-quote" as: "second-quote" 

    threshold: "change > 0"  

    quantifier: "first" 

  condition = "first-quote.symbol = second-quote.symbol" 

Figure 11 – example of joining operators 

2. Counting operators: atlesat, atmost & nth 

Counting operators designate a conjunction of n weighted events. A 

weight, that can have a negative value, is associated with each event 

operand. A situation with a counting operator is triggered when the total 

weight of collected events satisfies the operator. 

•  The operator atleast(n, E1, E2, …, Ek) designates a minimal 

conjunction of m events out of E1…Ek with no order importance 

such that the total weight of the m events is more than n. 
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•  The operator atmost(n, E1, E2, …, Ek) designates a maximal 

conjunction of m events out of E1…Ek with no order importance 

such that the total weight of the m events is less than n within the 

lifespan. A situation with this operator is always detected at the end 

of the lifespan (i.e. deferred detection mode). 

•  The operator nth(n, E1, E2, …, Ek) designates a conjunction of m 

events out of E1…Ek with no order importance such that the total 

weight of the m events is exactly n. 

The situation decrease-tendency occurs if the amount of company's stocks that are traded in 

decrease is higher than then number of stocks that are traded in increase by more than ten. A quote 

with an increase in the stock value has a default weight of one and a quote with a decrease in the 

stock values has a weight of minus one. More than a single candidate of each operand is counted 

as determined by the quantifier each. 

  operator = "atleast 10"  

  detection mode = "immediate" 

  first operand = event: "stock-quote" 

    threshold: “change < 0”  

    quantifier: "each" 

  second operand = event: "stock-quote" 

    threshold: “change >0” 

    weight: “-1” 

    quantifier: "each" 

The situation low-tradability occurs if not all of the company's securities are traded. In order to 

count only one candidate of each operand, the operands' quantifier is set to last. 

  operator = "atmost 3"  

  detection mode = "deferred" 

  first operand = event: "stock-quote"  

    quantifier: "last" 

  second operand = event: "option-quote" 

    quantifier: "last" 

  third operand = event: "bond-quote" 

    quantifier: "last" 

  condition = "stock-quote.symbol = option-quote.symbol and  

    stock-quote.symbole = bond-quote.symbole" 

Figure 12 – example of counting operators 
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An operand default weight is one, thus in the default case the operator 

atleast designates a minimal conjunction of n events, the operator atmost 

designates a maximal conjunction of n events, and the operator nth 

designates a conjunction of exactly n events. 

The decision whether more than a single candidate that is bounded to an 

operand is counted is determined by the operand's quantifier. The 

quantifiers each and strict each designate that more then one candidate is 

counted, while other quantifiers designate that only a single candidate is 

counted. Note that there is no restriction on the value of the enumerator n; 

it can be greater than the number of operands k, equal to k, or less than k. 

3. Absence operators: not & unless 

•  The operator not(E1, E2, …, Ek) designates that non of the events 

E1…Ek has occurred within the lifespan. 

•  The operator unless(E1, E2) designates the occurrence of the first 

operand and the non occurrence of the second within the lifespan.  

Situations with absence operator are always detected at the end of the 

lifespan (i.e. deferred detection mode). 

The situation strong-buy occurs if a stock price only increases during a trading day (lifespan). This 

situation is defined using the unless operator and is not . 

  operator = "unless" 

  detection mode = "deferred" 

  lifespan = “trading_day” 

  first operand = event: "stock-quote"  as: "quote-inc" 

    threshold: "change > 0"  

    quantifier: "first" 

  second operand = event: "stock-quote" as: "quote-dec" 

    threshold: "change < 0"  

    quantifier: "first" 

  condition = "quote-inc.symbol = quote-dec.symbol" 

Figure 13 – example of absence operators 

4. Temporal operators: every, after & unless 

•  The operator every(t) designates a period of i*t time-units since the 

situation's lifespan initiation, where i > 0  

•  The operator after(E, t, c) designates a period of t time-units since 

the occurrence of E, where the correlation code c determines the 
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correlation between two instances of E that the time distance 

between their occurrences is less than t. There are three possible 

correlation codes: add, ignore, and replace.  

 Add - both occurrences of E are considered. 

 Ignore - the first occurrence of E is considered and the 

second occurrence is ignored. 

 Replace - the first occurrence of E is ignored and the 

second occurrence is considered. 

•  The operator at(tp) designates time points that match the time 

pattern tp. A time pattern is a time-stamp formatted dd/mm/yyyy 

hh:mm:ss.mmm, that can contain a wildcard, denoted "*", in its 

fields and matches time points that have any value in these fields. 

For example, the time pattern **/11/2000 00:00:00.000 matches 

the beginning of every day in November 2000. 

Situations with absence operator are always triggered when they occur (i.e. 

immediate detection mode). 

2.3.3. Consumption phase 

A situation is usually repetitive (i.e. may occur more than once during its 

lifespan). However, a singular situation (i.e. may occur only once during its 

lifespan), denoted by the repeat mode = once, can be defined. Note that a 

repetitive situation that is detected in the deferred detection mode can be detected 

more than once at the end of the lifespan. In this case, the decision process 

whether a situation occurred or not, is preformed repetitively at the end of the 

lifespan until no more new situations are detected. 

If the situation is repetitive, a decision, whether the event instances that triggered 

it can be considered again as candidates for the same situation, should be applied. 

This decision is determined by the situation's consumption policy. The 

consumption policy is defined by a condition that event instances that triggered 

the situation must satisfy in order to be considered again as a candidate of the 

situation. This condition, which is called consumption condition, can be defined 

for every operand. An event instance that triggered the situation and satisfies the 

consumption condition that is associated with its operand is removed from the 
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candidate list of that operand. If a consumption condition is not defined for an 

operand, event instances of this operand are always consumed (i.e. the default 

consumption condition is true). 

The consumption modes that are defined in some composite event languages (e.g. 

snoop [7]) denote a predefined set of simple consumption conditions. These 

consumption modes can be defined in our model using a combination of a 

quantifier and consumption condition for each operand. Example is a situation 

that corresponds to a snoop [7] composite event in the recent parameter context 

that consumes the last instance of every operand when it occurs. This situation has 

a quantifier last and a true consumption condition for each operand. 

Our model supports consumption policies that cannot be defined in existing 

composite event languages. These consumption policies take place when different 

operands have different consumption conditions or when the consumption 

conditions are not true or false. 

The situation increase-decrease is detected for every pair of stock quotes where the first quote 

increases and the second quote decreases during a trading day (lifespan). This situation is defined 

using the sequence operator. The first operand (stock quote increases) has a quantifier each and a 

false consumption conditions in order to "remember" all the increases in the stock. The second 

operand (stock quote decreases) has a quantifier last and a true consumption conditions in order to 

consider only the last decrease and to avoid the multiple detection of the same pair. All pairs a re 

reported at the end of the lifespan. 

 

  operator = "sequence" 

  detection mode = "differed" 

  lifespan = “trading_day” 

  first operand = event: "stock-quote"  as: "first-quote" 

    threshold: "change > 0"  

    quantifier: "each" 

    consumption condition: "false" 

  second operand = event: "stock-quote" as: "second-quote" 

    threshold: "change > 0"  

    quantifier: "last" 

    consumption condition: "true" 

Figure 14 – example of consumption phase 
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The situation high-increase occurs if a stock increases and has a volume that is higher in at least 

20 points that the volume it had in the beginning of the trading day. This situation is defined using 

the operator sequence and a condition that imposes that the two quotes that trigger it have the same 

symbol and that the second quote is higher in more than 20 points than the first. The first operand 

has a quantifier strict first and a consumption condition false that imposes that only the first quote 

in the lifespan is considered for situation detection. The second operand has a threshold conditions 

that imposes that it increases, a quantifier last, an override condition true, and consumption 

condition true that impose that only the (currently) last quote is considered for situation detection 

and that each quote is considered only once. 

 

  operator = "sequence" 

  detection mode = "immediate" 

  lifespan = “trading_day” 

  first operand = event: "stock-quote"  as: "first-quote" 

    quantifier: "strict-first" 

    consumption condition: "false" 

  second operand = event: "stock-quote" as: "second-quote" 

    threshold: "change > 0"  

    quantifier: "last" 

    consumption condition: "true" 

    override condition: "true" 

  condition = "first-quote.symbol = second-quote.symbol and  

         first-quote.volume > second-quote.volume + 20 " 

Figure 15 – example of consumption phase 

2.3.4. Nested situations 

The situation manager triggers an inferred event when it detects a situation. An 

inferred event, as any other event, can be used as operand in other situations. This 

capability enables the definition of nested situations – situations that are based on 

concrete and inferred  (other situations) events. The inferred event is denoted an 

inner situation. Nested situations are roughly equivalent to operator composition 

[7][18] in the sense that a nested situation has an inferred event, that is triggered 

as a result of event composition as one of its operand. However, nested situations 

do not require that the same lifespan and operands’ (events’) selection and 

consumption policies are applied on the nested and inner situations. An example 

of situation nesting is presented figure 16. 
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A broker wishes to sell a stock if it has a decrease tendency and low tradability in a trading day. 

Situations that detected both cases are defined in figure 12. The situation sell-stock is a nested 

situation, based on the situations defined in figure 12. It correlates inferred events detected by the 

inner situations and checks if they both occurred on the same trading day. 

  operator = "all"  

  detection mode = "immediate" 

  lifespan = “trading_day” 

  repeatMode = “once” 

  first operand = event: "low-tradability" 

    quantifier: "first" 

  second operand = event: "decrease-tendency" 

    quantifier: "first" 

  condition = " low-tradability.symbol = decrease-tendency.symbol" 

Figure 16 – example of a nested situation 

2.4. Key Definition 

Key is used to perform  semantic matching of different events, by attribute’s 

value. This is similar (semantically) to equi-join in relational databases. 

A key denotes a semantic equivalence among attributes that belong to different 

events. For example the stock-exchange attribute in the stock-quote event, the 

stock-exchange attribute in the trade-start event, and the stock-exchange attribute 

in the trade-end event are semantically equivalent, in the sense that they refer to a 

stock exchange symbol.  

Keys are used to match different event instances that refer to the same entity (New 

York stock exchange is an example of an entity that is referred by the stock-

exchange attribute). A key divides a situation's detection process to numerous 

separate independent detection processes (denoted partitions), one partition for 

every group of semantically equivalent event instances. The partitioning can be 

preformed in the lifespan level, denoted global partitioning; in the situation level, 

denoted local partitioning; or in both levels.  

Global partitioning designates the partitioning of the situation's lifespan according 

to the values of the attributes defined by the dividing key, called a global key. If 

global partitioning is applied, a new lifespan is opened for every group of 

semantically equivalent event instances according to the lifespan definition, thus 

initiator and terminator events of one partition are not influenced by the existence 
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of open lifespans in other partitions. Moreover, an event instance that is associated 

with a situation operand is considered to be a candidate of the situation (if it 

satisfies the operand's threshold conditions) only in open lifespans that were 

initiated by an initiator that is semantically equivalent to the new event instance. 

Note that a global key must define a semantic equivalence among all the events 

that participate in the situation (i.e. initiators, terminators and operands). 

Local partitioning designates the partitioning of the situation within a lifespan 

according to the values of the attributes defined by the dividing key, called a local 

key. If local partitioning is applied, a separate detection process is preformed for 

every group of semantically equivalent event instances according to the situation 

selection strategy (selection phase), composition strategy (detection phase) and 

consumption strategy (consumption phase). The decisions that are taken in each 

phase of the situation composition in one partition (i.e. which candidate to select? 

is the situation detected? which candidates to consume?) are not influenced by the 

existence of candidates in other partitions. Note that local partitioning is different 

from equality conditions on the situation operands, in the sense that it applies the 

consumption and selection policies to each partition separately. A local key 

defines a semantic equivalence among all the situation's operands. 

The key symbol defines a semantic equivalence among stock-quote, bond-quote, and option-quote 

events using the symbol attribute. The key stock-exchange defines a semantic equivalence among 

stock-quote, bond-quote, option-quote, trade-start, and trade-end events using the stock-exchange 

attribute. The situation stock-collapse occurs if there are less than three decreases in a trading day. 

The stock-exchange key globally partitions this situation, thus a different lifespan is opened for 

every trading day in a different stock exchange. The symbol key locally partitions this situation, 

thus a different detection process is preformed for every symbol (company) and for every   trading 

day. 

  operator = "atmost 3" 

  detection mode = "deferred" 

  lifespan = "trading day" 

  global key = "stock-exchange" 

  local key = "symbol" 

  operand = event: "stock-quote"   

    threshold: "change > 0"  

    quantifier: "each" 

Figure 17 – example of key definition 
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The set of keys ∑K is a finite set ∑K = {K1, K2, …, Kn}, n ≥ 0. A key K is a finite set of pairs 

consisting of an event and one of its attributes. K = {eventAtt1, eventAtt2, …, eventAttn}, n ≥ 2. A 

pair of an event and one of its attributes eventAtt is a tuple eventAtt = (eventId, attId) where  

eventId is an event identifier and attId is an attribute identifier such that  

1. ∀ K ∈  ∑K, ∀ eventAtt ∈  K, ∃ E ∈  ∑E : E.id = eventAtt.eventId ∧  ∃ att ∈  E.atts : att.id = 

eventAtt.attrId;  

2. ∀ K ∈  ∑K, ∀ eventAtti, eventAtt j ∈  K, i ≠ j : eventAtti.eventId  ≠ eventAttj.eventId; and   

3. ∀ K ∈  ∑K, ∀ eventAtti, eventAtt j ∈  K, i ≠ j : typeOf(eventAtti.attId)  = typeOf(eventAttj.attId) 

where typeOf is a function that returns the type of the specified attribute. 

Figure 18 – formal definition of key 

The set of situation definitions ∑S is a finite set ∑S = {S1, S2, …, Sn}, n ≥ 0. A situation S is a tuple 

S = (eventId, operands, lifespanId, cond, detectionMode, globalKeys, localKeys) where 

1. eventId is the internal event that is triggered by S such that ∀ S ∈  ∑S, ∃ E ∈  ∑E : E.id = 

S.eventId 

2. operands = {operand1, operand2, …, operandn}, n ≥ 0 is a finite bag of operands. An operand 

operand is a tuple, operand = (eventId, threshold, quantifier, override, consumption) where 

eventId is an event identifier such that  ∀ S ∈  ∑S, ∀ operand ∈  S.operands ∃ E ∈  ∑E : E.id = 

operand.eventId; threshold is a predicate over the operand’s event attributes; quantifier ∈  

{first, last, each, strict first, strict last, strict each}; override is a predicate over the operand’s 

event attributes; and consumption is a predicate over the operand’s event attributes. 

3. lifespanId is a lifespan identifier such that ∀ S ∈  ∑S, ∃ L ∈  ∑L : L.id = S.lifespanId 

4. cond is a predicate over the situation’s operands’ event attributes (includes the event algebra 

operator) 

5. detectionMode ∈  {immediate, differed, delayed} 

6. globalKeys = {keyId1, keyId2, …, keyIdn}, n ≥ 0 is a finite set of key identifiers such that ∀ S ∈  

∑S, ∀ keyId ∈  S. globalKeys, ∃ K ∈  ∑k , ∃ L ∈  ∑L: (K.id = keyId ∧  L.id = S.lifespanId ∧  (∀ init ∈  

L.inits, ∃ eventAtt ∈  K.eventAttr : init.id = eventAtt.eventId) ∧  (∀ term ∈  L.terms, ∃ eventAtt ∈  

K.eventAttr : term.id = eventAtt.eventId or term.id is an expiration interval) ∧  (∀ operand ∈  

S.operands, ∃ eventAtt ∈  K.eventAttr : operand.eventId = eventAtt.eventId)) 

7. localKeys = {keyId1, keyId2, …, keyIdn}, n ≥ 0 is a finite set of key identifiers such that ∀ S ∈  

∑S, ∀ keyId ∈  S. globalKeys, ∃ K ∈  ∑k : (K.id = keyId ∧  ∀ operand ∈  S.operands, ∃ eventAtt ∈  

K.eventAttr : operand.eventId = eventAtt.eventId) 

Figure 19 – formal definition of situation 
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Figure 20 – entity relationship diagram of the main elements of the situation definition language 
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3. Data structures and algorithms 

Situation composition is the process applied to detect the occurrence of a situation 

in reality. It is preformed in three phases: the collection phase, the detection 

phase, and the consumption phase as described in section 2.3 - situation 

definition. Each phase of the composition process performs different tasks; 

however, all phases use the same data structure.  

Section 3.1, data structures, describes the data structures that are used during the 

composition process; section 3.2, algorithms, describes the algorithms that are 

used in each phase of the composition process; section 3.3, best-case and worst-

case scenario, describes the best-case and worst-case performance of the 

algorithms. 

3.1. Data structures 

The data structure, that is specific for a single situation, is classified to static and 

dynamic data structure. The static part maintains the situation's meta-data 

(definition), while the dynamic part represents knowledge about events that occur 

in runtime and affect the composition process. The dynamic part of the data 

structure consists of global and local partition tables that separate the event 

instances that affect the composition process to partitions, as defined by the 

station's global and local keys. The event instances, in each partition, are stored in 

candidate lists. 

The situation's data structure is described in figure 21. 

•  Global partition table - A mapping between global key values and global 

partitions. A global key value is the information associated with event 

instances in attributes that are semantically equivalent, as defined by the 

situation's global key. A global partition contains open lifespans that have 

been initiated by events with a global key value that is associated with the 

global partition. If global partitioning (i.e. global key) is not defined, then 

there is a single global partition that holds all the open lifespans of the 

situation.  

•  Local partition table - A mapping between local key values and local 

partitions in a specific lifespan. A local key value is the information 
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associated with event instances in attributes that are semantically 

equivalent, as defined by the situation's local key. A local partition 

contains a set of candidate lists that contains event instances that match the 

local key value and are associated with the situation's operands.  In a local 

partition, each candidate list is associated with a single operand of the 

situation and each operand is associated with a single candidate list. A 

candidate list contains event instances that satisfy the operand's threshold 

condition and where not consumed, sorted by the event's detection time. If 

local partitioning (i.e. local key) is not defined, then there is a single local 

partition that holds the candidate lists of the situation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 – situation’s data structure 

3.2. Algorithms 

The composition process makes changes in the dynamic data structures according 

to event occurrences and the situation's meta-data. New event instances may 

initiate and terminate lifespans (lifespan management algorithms) and may be 

meta-data 

global partition table 

global partition 

local partition table 

global partition 

local partition table local partition table 

lifespan lifespan lifespan 

candidate lists candidate lists 

candidate lists 

candidate lists 

   dynamic part 

   static part 
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added to the situation's candidate lists (collection phase algorithms). When the 

dynamic data structure is updated, the situation detection process (detection phase 

algorithms) can be applied. The detection process does not change the dynamic 

data structure, however, if a situation is detected, candidates may be consumed 

(consumption phase algorithms). When the dynamic data structure is updated 

again (after the consumption phase) a new event instance can be processed. 

process event (event: e) 

for each situation s that e might terminate 

 call terminate lifespan (s, e) 

for each situation s that e is associated with one of its operand 

 call collect  instance (s, e) 

for each situation s that e might initiate  

 call initiate lifespan (s, e) 

Figure 22 – algorithm for process event  

A single event instance cannot take part in a situation in different roles (i.e. it can 

not initiate and terminate the same lifespan, or participate in the situation and 

terminate or initiate the situation's lifespan) thus the evaluation order of the 

instance possible roles (initiation, termination, and collection) is irrelevant. The 

evaluation order that is preformed in the process event algorithm satisfies this 

requirement by giving priority to lifespan termination over instance collection.  

3.2.1. Lifespan management algorithms 

An event occurrence can result in the initiation of new lifespans and in the 

termination of existing ones. The initiation and termination of lifespan changes 

the dynamic part of the data structure. It can add or remove global partitions to the 

global partition table of numerous situations, if such tables exist, and change the 

amount of open lifespans for each situation, otherwise. 

When an event instance that serves as a possible terminator occurs, the terminate 

lifespan procedure is evaluated. It is called for each situation that is associated 

with a lifespan that this event instance may terminate. This procedure removes 

open lifespans, and all the data that is associated with them, from the dynamic part 

of the situation's data structure and initiates the situation's detection process if the 

situation's detection mode is deferred (i.e. the situation is detected at the end of its 

lifespan). It tests the conditions for lifespan termination in all the situation's open 
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lifespans, if the situation does not have a global key, and open lifespans that 

belongs to the global partition that is associated with the global key value, if the 

situation defines a global key. An open lifespan is terminated if the event instance 

satisfies the conditions for its termination (i.e. the event instance satisfies the 

lifespan terminator's threshold condition and the lifespan matches the terminator's 

quantifier). 

terminate lifespan (situation: s, event: e) 

gv ���������	
�����	�� e as defined by s global key 

gp ������������������������������	�����gv in the global partition table of s 

for each lifespan l in gp 

if e satisfies the conditions for l termination 

  remove l from gp 

  if s detection mode is deferred  

   call detect situation (s, l) 

Figure 23 – algorithm for lifespan termination 

When an event instance that serves as a possible initiator occurs, the initiate 

lifespan procedure is evaluated. It is called for each situation that is associated 

with a lifespan that this event instance might initiate. This procedure adds new 

lifespans to the dynamic part of the situation's data structure. It tests the conditions 

for lifespan initiation in the global partition associated with the event instance's 

global key value, if the situation defines a global key or in the single global 

partition that exist, if the situation does not define a global key. A new lifespan is 

initiated if the event instance satisfies the conditions for its initiation (i.e. the 

event instance satisfies the lifespan initiator's threshold condition and the 

lifespan's correlation is satisfied). 

initiate lifespan (situation: s, event: e) 

gv ���������	
�����	�� e as defined by s global key 

gp ������������������������������	������� in the global partition table of s 

if e satisfies the conditions for lifespan initiation 

 l ��	����	���� 

 add l to gp 

Figure 24 – algorithm for lifespan initiation 
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3.2.2. Collection phase algorithms 

An event instance may be a candidate (i.e. influence the situation detection) in 

numerous situations, and for every situation it may be a candidate in each one of 

its lifespans. When an event instance occurs, the add instance procedure 

determines in which situations, in which global partitions (i.e. in which lifespans), 

and in which local partitions an event instance is considered as a candidate. This 

procedure is called for each situation for which the event is associated with one of 

its operands. It checks if the event instance is a candidate in every lifespan that 

belongs to the global partition that is associated with the event instance's global 

key value, if the situation has a global key. If the situation does not define a global 

key, it checks if the event instance is a candidate in all the lifespans of the 

situation. For each lifespan, the event instance is added to the candidate list of the 

operand that it is associated with its event class, if it satisfies the operand's 

threshold conditions. Note that if a local key is defined, the event instance is 

added (i.e. is a candidate) only to candidate lists that are in the local partition that 

is associated with the instance's local key value, in the local partition table of each 

lifespan. A situation detection process is performed, if the situation's detection 

mode is immediate or delayed (i.e. situation occurrence is detected immediately) 

and the event instance is added to at least one candidate list in the situation's 

lifespan. 

add instance (sitaution: s, event: e) 

gv ���������	
�����	�� e as defined by s global key 

lv ��������	
�����	�� e as defined by s local key 

gp ������������������������������	�����gv in the global partition table of s 

for each lifespan l in gp 

 lp �����������������������������	������v in the local partition table of l 

 for each operand op in s 

  if e is associated with op in s 

   if e satisfies the threshold conditions of op 

    add e at the beginning of op candidate list in lp 

 if s detection mode is immediate or delayed and e was added to a candidate list 

  call detect situation (s, l, e) 

Figure 25 – algorithm for collection phase 
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3.2.3. Detection phase algorithms 

The detection process is preformed when a lifespan is terminated, if the situation 

detection mode is deferred, or when a candidate event occurs, if the situation 

detection mode is immediate or delayed. In the first case, the detection process is 

applied to all local partitions that exist in the terminated lifespan. In the second 

case, the detection process is applied only on the local partitions in which the 

event becomes a candidate. 

The detection process depends on the situation's operator. It applies different 

methods to detect situation with different operators. 

detect  situation  (situation: s, lifespan: l [,event: e]) 

lv ��������	
�����	�� e as defined by s local key or null if e is not specified 

lp �����������������������������	������v in the local partition table of l if lv is not null 

for each local partition lp in l, if lp is not null, or for lp 

 call detect [operator] situation (s, lp) 

Figure 26 – algorithm for detection phase 

•  Joining operators (all, sequence) – If the detection mode is immediate or 

delayed then a backtracking algorithm is applied on local partitions in 

which an event becomes a candidate; otherwise (detection mode is 

deferred), it is applied on all local partitions. If the operator is satisfied, the 

backtracking algorithm checks if the conditions applied by the operator, 

the where clause, and the operands' quantifiers are satisfied; selects the 

candidates that satisfy these conditions; and triggers the situation. This 

algorithm is based on the fact that the condition defined in the where 

clause can be converted to CNF (clause normal form). The CNF condition 

can further be converted to another form such that a clause C*
i ,0<i≤k, k is 

the number of operands, is a conjunction of all  the clauses in the CNF 

condition that reference operands that are defined before the ith operand  

in the situation, and include a reference to the ith operand. 

Note that if a CNF clause Ci references only a single operand, this clause 

can be removed from the condition and be added to the operand's threshold 

condition, if the operand's quantifier is relative. 

This algorithm considers the conditions in their final form. It selects the 

first, the last or each candidate of every operand as defined by the 
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operand's quantifier (see section 2.3.2, Detection phase). It selects a 

candidate from the first operand, and then continues and selects a 

candidate from each of the ascending operands. A candidate that is 

selected for an operand k must satisfy the sub-condition for this operand 

C*
k (also written sub-cond*

op where op is the kth operand). If there are no 

candidates of the operand that satisfy the sub-condition, than the algorithm 

backtracks to the previous operand and selects another candidate that is 

associated with it. When a candidate is selected for every operand, an 

internal event, that represents the situation, is triggered using the values of 

the selected candidates. This algorithm considers only few combinations 

of candidates that may cause a situation and saves a lot of computation 

effort. It eliminates combinations of events that do not satisfy the 

conditions for situation composition. It does so by eliminating a 

combination if a prefix of k events in the combination does not satisfy the 

sub-condition C*
k. 

A situation S is triggered when a sequence of three events E1, E2, and E3 occur. Each event has a 

single attribute named x. E1 is the first operand of S, E2 is the second, and E3 is the third. The 

situation S is triggered only if the condition specified in the where clause is satisfied.  

The condition in its original form is  

 E1.x > E2.x or (E1.x = E2.x and E2.x < E3.x and E3.x > 5) 

The condition in a CNF form is 

 (E1.x > E2.x or E1.x = E2.x) and (E1.x > E2.x or E2.x < E3.x) and 

 (E1.x > E2.x or E3.x > 5) 

 Where 

 C1 ≡ (E1.x > E2.x or E1.x = E2.x) 

 C2 ≡ (E1.x > E2.x or E2.x < E3.x) 

 C3 ≡ (E1.x > E2.x or E3.x > 5) 

The condition in its final form is  

  (E1.x >E2.x or E1.x = E2.x) and (E1.x > E2.x or (E2.x < E3.x and E3.x > 5)) 

 Where 

 C*1 ≡ true 

 C*2 ≡ C1 ≡ E1.x >E2.x or E1.x = E2.x 

 C*3 ≡ C2 ∧  C3 ≡ (E1.x > E2.x or E2.x < E3.x) and (E1.x > E2.x or E3.x > 5) 

  ≡ (E1.x > E2.x or (E2.x < E3.x and E3.x > 5)) 

Figure 27 – example of condition resolution  
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•  Counting operators (atmost, atleast, nth) - If the total weight of 

candidates, satisfies the conditions applied by the operator (see section 

2.3.2 Detection phase), a situation is triggered. A numerator totals the 

weight of candidates in each local partition. It increases when a new 

candidate is detected, and decreases when an existing candidate is 

consumed. When the detection process is applied, the enumerator is 

compared to the required number, as defined by the situation, and an 

internal event is triggered, if the conditions are satisfied. 

If the conditions for situation composition are defined in the where clause of 

the situation, the backtracking algorithm that was described for joining 

operators is preformed. However, internal events are not triggered when the 

algorithm handles the last operand, but the candidates in the selection are 

accumulated. An internal event is triggered if the total number of accumulated 

candidate satisfies the counting operator. 

•  Absence operators (not, unless) - If there are no candidates that are 

associated with the situation's absence operands then a situation is 

triggered. A flag is raised if a candidate that is associated with an absence 

operand is detected. After the flag is raised, event instances are ignored by 

this situation thus no new candidates are considered. At the end of the 

lifespan (recall that absence situation are always detected in the deferred 

detection mode) an internal event is detected if the flag is not raised. 

•  Temporal operators (at, every, after) - A timer is used for the detection 

of temporal situations. The timer triggers an internal event that represents 

the situation, after the required time interval has passed.  The request for 

the time notification is preformed when the situation's lifespan initiates for 

the at and every operators, when a candidate arrives for the after operator, 

and when the timer notification occurs for the every operator. 
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detect  joining situation  (situation: s local partition: lp [,operand op] [,selection s]) 

if op is last operand  

 s satisfies operator and conditions 

 trigger internal event using s 

 return true 

else  

 return false 

else   

 op ��	�����	���������������	��������lp if op is null 

relative: 

if op quantifier is relative first, relative last or relative each 

 c   first/last unselected candidate of op thus sub-cond*
op is satisfied by s ∪  c  

 if not c 

  if situation was triggered  

   return true 

  else  

   return false 

 if call detect joining situation (s ∪  c, lp, op, s) 

  quantifier is first or last 

  return true 

 else  

  goto relative 

absolute: 

if op quantifier is strict first, strict last, or strict each 

 c   first/last unselected candidate of op  

if s ∪  c satisfied sub-cond*
op 

 if call detect joining situation (s ∪  c, lp, op, s) 

  quantifier is first or last 

   return true 

  else 

   goto absolute 

 else 

  return false 

 else  

  return false 

Figure 28 – algorithm for detection of situation with joining operator 
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3.2.3. Consumption phase algorithms 

The consumption process is preformed when the detection phase is finished, if the 

situation's detection mode is immediate or delayed. This process determines if 

candidates that actually caused the situation detection can be considered again in 

future detection processes. Since only a single detection process is applied if the 

situation's detection mode is deferred (i.e. at the end of the lifespan), the 

consumption process is applied only if the situation's detection mode is immediate 

or delayed. Candidates that caused the situation are accumulated during the 

detection process (i.e. when an internal event that represents the situation is 

triggered by a selection of candidate s, the candidates in s are accumulated). When 

the detection process is finished, the accumulated candidates are consumed if they 

satisfy the consumption conditions of the operand that they are associated with. 

Note that candidates are consumed and not event instance, that an event instance 

that is a candidate in multiple global and local partitions can be consumed in some 

partitions and not in others. 

3.3. Best-case and worst-case scenarios 

Situation definitions and reported event instances impact the performance 

(performance measurements are discussed in section 4) of the situation manager 

and the execution of the algorithms introduced in the previous section.  

•  A scenario where all reported event instances are not defined in Amit 

results in discarding all the event instances before they are considered for 

situation detection. The events are evaluated against a list of all event 

types and then discarded. The complexity in this case is  O(logEn) where 

En is the number of event types to evaluate a single event instance. 

•  A scenario on which a situation has several operands with a quantifier 

each and candidates that are never consumed (consumption condition is 

false) or overridden (override condition is false); is detected at the 

immediate detection mode; is relevant during a lifespan that is never 

terminated; has a were condition; and affected by all event instances 

results in exponential computation in the number of events. A new event 

instance always triggers evaluation of the situations that compares it 
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against all existing candidates (in order to evaluate the where condition). 

Since candidates are not consumed, a new event instance is checked 

against all previous events. The complexity in this case is O(nop
*l) where n 

is the number of event instance, op is the number of operands in the 

situation, and l is the number of open lifespans where the situation is 

relevant. 

4. Performance measurements 

The performance measurements goal is to estimate the incoming event rate that 

the situation manager can handle and compare it with other event management 

tools. A previous work that defines benchmarks of rules in active database [19] 

does not cover the functionality of our language. The incoming event rate that is 

required by an application varies among different applications. We identified 

several factors [23] that influence the performance of the situation manager. 

1. The number of parallel open lifespans in a computation 

2. The number of candidates (i.e. partially processed event instance in the 

situation manager that passed the threshold conditions and were not 

consumed). 

3. The number of detected situations. Situation detection triggers an internal 

inferred event that is processed by the situation manager.  

These factors differ from one application to the other. We defined several 

scenarios that describe typical applications. The results of these scenarios provide 

an estimation of the situation manager's performance in real life applications. 

Section 4.1, scenarios, describes four scenarios. Section 4.2 results, describes the 

results of these four scenarios. 

4.1. Scenarios 

We define a set of fourteen event types, {E1, E2, …, E14}, each event has a single 

attribute X that has a discrete value distributed evenly between 1 and 10. These 

events are used in order to define the situations in the scenarios. We defined ten 

sets of 100,000 event instances that are used to evaluate the performance of the 

situation manager.  



36 

 

 

Event Type Distribution 

E1 0.2 

E2 0.2 

E3 0.1 

E4 0.1 

E5 0.1 

E6 0.1 

E7 0.1 

E8 0.05 

E9 0.02 

E10 0.02 

E11 0.0025 

E12 0.0025 

E13 0.0025 

E14 0.0025 

Table 1 – event distribution 

These event instances' sets are generated randomly using the distribution detailed 

in the table above. 

4.1.2. Standby World 

This is an empty scenario that does not define any situations. It gives an upper 

bound on the performance of the situation manager (i.e. the event rate that the 

situation manager can handle). 

4.1.3. Noisy World 

This is a light scenario that uses only low percentage (1%) of the event instances 

in order to decide if a situation occurs. The situations are not complex (i.e. no 

conditions, small number of lifespans are open simultaneously) and constructed 

from a small number of events. 

4.1.3. Filtered World 

This is a filtering scenario that uses high percentage (80%) of the event instances 

in order to decide if a situation occurs. However, high percentages of these 

instances (80%) are not relevant (i.e. do not satisfy the threshold conditions). The 
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situations are complex (i.e. conditions are applied, many lifespans are open 

simultaneously) and some are based on other situations (i.e. on internal events). 

4.1.4. Complex World 

This is a heavy scenario that uses high percentage (80%) of the event instances in 

order to decide if a situation occurs. The situations are complex (i.e. conditions 

are applied, many lifespans are open simultaneously), some based on other 

situations (i.e. on internal events). 

Situation s1 

  operator = "sequence"  

  detection mode = "immediate" 

  first operand = event: "E12" 

  second operand = event: "E13" 

  lifespan = initiator: "E11" correlation: "ignore" 

   terminator: "E14" quantifier: "each" 

Situation s2 

  1operator = "after 1000"  

  detection mode = "immediate" 

  first operand = event: "E13" 

  lifespan = initiator: "startup" 

   no terminator 

Situation s3 

  operator = "all"  

  detection mode = "deferred" 

  first operand = event: "E13"  

  second operand = event: "E14" 

  local key : attribute: X 

  lifespan = initiator: "E11" correlation: "add" 

   terminator: "E12" quantifier: "each" 

Figure 29 – noisy world scenario 

                                                 
1 S2 is detected 1000 milliseconds after an instance of E13  occurs 
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Situation s1 

  operator = "sequence"  

  detection mode = "immediate" 

  first operand = event: "E1” threshold: "X  > 7" alias: ”E1A” 

  second operand = event: "E2" threshold: "X > 7" 

  third operand = event: "E1" threshold: "X > 7" alias “E1B” 

  condition = "E1A.X = E1B.X" 

  lifespan = initiator: "E5" correlation: "ignore" threshold: "X=3" 

   initiator: "E6" correlation: "ignore" threshold : "X<2" 

   terminator: "E7" quantifier: "first" threshold: "X =7" 

Situation s2 

  operator = "atleast 5"  

  detection mode = "immediate" 

  first operand = event: "E2" 

  global key : attribute: X 

  lifespan = initiator: "E6" quantifier: "add" threshold: "X = 4" 

   terminator: "E8" quantifier: "each" threshold: "X = 9" 

Situation s3 

  operator = "all"  

  detection mode = "immediate" 

  first operand = event: "S1" 

  second operand = event: "E3" threshold: "X > 7" 

  third operand = event: "E4" threshold: "X > 7" 

  condition = "E3.X = E4.X" 

  lifespan = initiator: "E5" correlation: "add" threshold: "X = 1" 

   terminator: "E6" quantifier: "last" threshold: "X = 2” 

Situation s4 

  operator = "not"  

  detection mode = "deferred" 

  first operand = event: "S2" 

  lifespan = initiator: "E3" correlation: "add” 

   terminator: "E4" quantifier: "first"  

Figure 30 – filtered world scenario 
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Situation s1 

  operator = "sequence"  

  detection mode = "immediate" 

  first operand = event: "E1” alias: ”E1A” 

  second operand = event: "E2"  

  third operand = event: "E1" alias “E1B” 

  condition = "E1A.X = E1B.X" 

  lifespan = initiator: "E5" correlation: "ignore"  

   initiator: "E6" correlation: "ignore"  

   terminator: "E7" quantifier: "first"  

Situation s2 

  operator = "atleast 5"  

  detection mode = "immediate" 

  first operand = event: "E2" 

  global key : attribute: X 

  lifespan = initiator: "E6" quantifier: "add"  

   terminator: "E8" quantifier: "each"  

Situation s3 

  operator = "all"  

  detection mode = "immediate" 

  first operand = event: "S1" 

  second operand = event: "E3"  

  third operand = event: "E4"  

  condition = "E3.X = E4.X" 

  lifespan = initiator: "E5" correlation: "add"  

   terminator: "E6" quantifier: "last"  

Situation s4 

  operator = "not"  

  detection mode = "deferred" 

  first operand = event: "S2" 

  lifespan = initiator: "E3" correlation: "add” 

   terminator: "E4" quantifier: "first" 

Figure 31 – complex world scenario 
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4.2. Scenarios' results 

Measurements were performed on a Pentium IV 1.4 Ghz machine running 

windows 2000. The measurements started after the situation manger loaded the 

definitions and the set of event instances was generated (in memory). In runtime, 

the “client” thread (a java program that use the situation manager) sent event 

instances (one by one) to the situation manager by calling the situation manager’s 

API. The “client” thread yielded (the CPU) every 1000 sent events. Three 

parameters were monitored: 

1. Number of incoming event and detected situations (i.e. number of processed 

events) 

2. Execution time. 

3. Internal execution statistics. 

Table 2 presents the average results of performance measurements of 10 

executions, each one with 100,000 events. The high number of processed event 

eliminates the affect of the sequence in which the events occurred (which is 

random in our case) on the measured results. The results are detailed in the table 

below. 

  Standby world Noisy world Filtered world Complex world 

External events 100000 100000 100000 10000 

Detected situations 0 112 30435 139111 

Events + Situations 100000 100112 130435 239111 

Performance Time (ms) 1372 1742 16503 124319 

External events / sec 72887 57406 6060 804 

Detected situations /sec 0 64 1844 1118 

Events / sec 72887 57470 7903 1923 

Candidates 0 1077 120662 2350754 

Access to event information0 992 1289131 11302695 

Condition Performed 0 0 833487 15299472 

Initiated lifespans 0 389 12543 36423 

Terminated lifespans 0 387 11524 36280 

Table 2 - performance measurements results 
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The performance measurements results show that 

a. The situation manager upper limit is about 70,000 events per second. This 

event rate is achieved if none of the incoming event instances are classified to 

events that take part in situation composition. 

b.  The lower bound is about 2,000 evens per second. This is considered as high 

performance relative to other solutions in the event 

composition/correlation/management spaces. 

c. The factors that significantly affect performance are 

1. The average number of parallel open lifespans (the situation manager’s 

detection process is performed separately for each lifespan). 

2. The number of relevant event instances (i.e. partially processed event 

instances that passed the threshold conditions and were not consumed). A 

candidate represents a relevant event instance within a lifespan. A high 

number of candidates result from high number of relevant event instances, 

high number of parallel open lifespans, or both. 

d. There is not a decisive�association between the number of candidates, the 

number of open lifespan, and the number of relevant events to the number of 

detected situations. The number of detected situations is also influenced�by the 

situation’s operator and where condition. 

5. Related Work 

We review prototypes and systems that support definition of composite events. 

These include prototypes from the active database domain, systems from the 

network management (i.e. event correlation) domain, and workflow management 

domain. We compare the situation manager definition language to the related 

work and show how it extends their semantics. 

5.1. Active Database 

Contemporary commercial systems do not support composite events. However, 

they support triggers as specified in the SQL3 standard [25]. A trigger in SQL3 is 

an ECA rule that is activated by a database state transition and has an SQL3 

predicate as a condition and a list of SQL3 statements as an action. Commercial 
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databases that support triggers include DBMS products such as DB2, Oracle, 

Sybase and Informix. 

5.1.1. ODE 

ODE [18] is an active object oriented database that has been developed in Bell 

Laboratories and supports the specification and detection of composite events. 

Primitive events in ODE are triggered by the database and include object state 

events, method execution events, time events and transaction events. Composite 

events are specified as event expressions. An event expression is a mapping from 

a history h (sequence of primitive events) to another history, a subset of h, 

comprising of the points at which the event expression is satisfied. An event 

expression can be NULL, any primitive event a, or an expression formed using the 

operators ∧ , !, (not), relative and relative+. The semantics of ODE event 

expressions are defined as follows (E and F denote event expressions): 

1. E[null] = null for any event E, where null is the empty history. 

2. NULL[h] = null. 

3. a[h], where a is a primitive event, is the maximal subset of h composed of 

all the occurrences of event a. 

4. (E ∧  F)[h] = E[h] ∩ F[h]. 

5. (!E)[h] = (h – E[h]). 

6. realtive(E, F)[h] are the event occurrences in h, at which F is satisfied, 

assuming that the history started immediately following some event 

occurrence in h at which E takes place. Formally, relative(E, F)[h] is 

defined as follows. Let Ei[h] be the ith event occurrence in E[h]; let hi be 

obtained from h by deleting all events that occurred before Ei[h]. Then 

relative(E, F)[h] = Υi ihF ][  where i ranges from 1 to the  cardinality of 

E[h]. 

7.   

 

ODE implements composite event detection using finite state automata. This is 

because composite events can be expressed as regular expressions. 

Amit extends the semantics of ODE in several aspects: 

1. ODE does not support the operators atleast, atmost, nth, at, after, and every. 
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2. ODE cannot express the information reported with detected composite events, 

thus limiting the expressiveness of nested situation. 

3. ODE has limited expressive capabilities for the definition of time intervals 

during which event composition is relevant using the operator relative(E, F) 

that designates the occurrence of F after an occurrence of E (initiator) and 

before(E) that designates any event before E (terminator). 

4. ODE does not support selection of event instances (quantifiers) 

5. ODE does not support reuse policies of event instances (i.e. events are always 

consumed). 

6. ODE makes limited usage of the semantic information that is reported with 

events during event composition. It allows some filtering conditions (masks) 

and equality conditions (parameters) on events that participate in an event 

expression (composite event). 

Tables 3 shows how ODE operators can be expressed in Amit 

5.1.2. Snoop 

Snoop [7] has been developed at the University of Florida. It is an expressive 

event specification language for active database, implemented in the Sentinel 

object oriented database [5]. Events in Snoop are atomic occurrences and include 

database events, explicit (also called external or abstract) events and temporal 

events. Events in Snoop, both primitive and composite, have a schema of 

parameters (attributes) associated with them. This schema describes additional 

information on the event that can be used only during the condition part of the 

ECA rule. A composite event in Snoop is defined by applying an event operator to 

component events that are either primitive events or composite ones. 

Consequently, an event is a function from the time domain onto the boolean 

values. Snoop supports the disjunction, conjunction and sequence operators in 

addition to the following operators. 

1. Any(m, E1, E2, … En), where m ≤ n, occurs when m  distinct events out of 

the n events occur. Any(m, E*) specifies m distinct occurrences of an event 

E. 

2. The aperiodic event A(E1, E2, E3) is signaled each time E2 occurs during 

the closed interval defined by the occurrence of E1 and E3. The event 
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A*(E1, E2, E3) occurs only once when E3 occurs and accumulates the 

parameters for each occurrence of E2. 

3. The periodic event P(E1, t[:parameters], E3) where t[:parameters] is a 

constant time increment with optional parameter list. It occurs every t time 

units, starting when E1 occurs and ending after E3, and collects the 

specified parameters. The commutative version of P, P*(E1, 

t[:parameters], E3) occurs only once when E3 occurs. The specified 

parameters are collected and accumulated at the end of each period and 

made available when P* occurs. 

Snoop introduces the notation of parameter contexts (analogous to the notation of 

consumption modes introduced in HiPAC [11]) for the purpose of capturing 

application semantics for computing the parameters (of composite events) when 

they are not unique. Four contexts are introduced. 

1. Recent: In this context, only the most recent occurrences of each Ei that 

have started the parameter computation are taken into account for 

computing the parameters of E. When E occurs, the composite event is 

signaled and all the occurrences that are used in the parameter relation are 

deleted. 

2. Chronicle: In this context, instances of component events are taken into 

account in the chronological order in which they occur. When E is 

signaled, its parameters are computed using the oldest instance of each 

component event, and the parameters of these instances are deleted. 

3. Continuous: In this context, each occurrence of an event that marks the 

beginning of the interval of an event expression is considered a potential 

candidate for stating a parameter set computation.  

4. Cumulative: In this context, parameters of E include the parameters of all 

the occurrences of each component event. Whenever E is signaled, all the 

entries in the parameter relation associated with each component event are 

deleted. 

Snoop uses event trees and event graphs in order to detect composite events. For 

each composite event an event tree is defined, and these trees are merged to form 

an event graph. 
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To illustrate parameter contexts, consider the composite events A = any(2, E1, E2) ; E3 where E1, 

E2, E3 are primitive events. Also consider the following sequence of event occurrences e21, e12, e13, 

e24, e15, e36, e38, e29 where eij is an occurrence of event i at time j.  In the recent context A occurs at 

time 6 and includes the parameters of event instances e15, e24, and e36. In the chronicle context A 

occurs twice. At time 6 with the parameters of event instances e12, e21, and e36; and at time 8 with 

the parameters of event instances e13, e24, and e38. In the continuous context A occurs four times, 

all at time 6. The first occurrence of A has the parameters of event instances e12, e21, and e36; the 

second occurrence has the parameters of e12, e24, and e36; the third one has the parameters of e13, 

e24, and e36; and the last one includes the parameters of e15, e24, and e36. 

Figure 3 – example of snoop’s parameter contexts 

Amit extends the semantics of SNOOP in several aspects: 

1. Snoop does not support the operators atleast, atmost, nth and unless. 

2. Snoop has limited expressive capabilities for the definition of time intervals 

during which event composition is relevant using the operators A, A*, P, and 

P* in association with a parameter context. The lifespan element of the 

situation manager’s definition language covers all these possibilities and 

enables the definition of time intervals (e.g. the lifespan that is presented in 

figure 7) that cannot be expressed in snoop.  

3. Snoop’s parameter contexts describe some decision possibilities for event 

selection (which of the candidate events that can trigger the situation, actually 

triggered it) and reuse (consumption). However, Snoops cannot express all 

possibilities of event selection and reuse policies that are expressed in Amit 

using a combination of a quantifier and a consumption condition. The ability 

to define different quantifiers and consumption conditions for each operand 

(in contrast to Snoop in which the parameter context is defined globally for 

the composed event) and the ability to evaluate event information in order to 

decide on the consumption policy (in contrast to snoop) enables to express 

Snoop’s recent, chronicle, and continuous parameter contexts in Amit along 

with additional reuse and consumption policies (e.g. the reuse and 

consumption policies of the situations that are presented in figures 14 and 15). 

4. Snoop cannot use the semantic information reported with events during event 

composition. This information is widely used in Amit to impose event filtering 

(operand’s thresholds conditions), to impose reuse policies (override and 

consumption conditions), to partition semantically situation detection (keys), 

to decide on lifespan’s initiation and termination (initiators and terminators 
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thresholds conditions) and to impose additional conditions in the situation 

level (situation’s where condition). Snoop, as other tools, assume that filtering 

(conditions) will be performed later (i.e. in the condition phase of the ECA 

rule). In addition to the inadequacy of this assumption, it should be noted that 

the only way to achieve the equivalent of simultaneous composition and 

content filtering in current tools is a two-phased process: phase one – 

composition that generates all the combinations; phase two –filtering on the 

results of phase one. The two-phased approach may be inefficient when the 

number of detected situations is much smaller relative to the number of the 

combinations that are produced in phase one. Furthermore, the number of 

combinations produced in phase one can be exponential. The ability to 

combine composition and filtering is a property that it improves the 

performance in the general case, and enables the detection of situations that 

are not practically feasible in other solutions, in extreme cases.  

Tables 4,5, and 6 show how Snoops operators in the recent, chronicle and 

continuous parameter contexts can be expressed in Amit. The cumulative 

parameter context can not be expressed in Amit using primitive operators. 

However, Amit has means to extend the language by using external functions; 

Snoop’s cumulative parameter context functionality can be achieved by using a 

function that accumulates situations that are defined with a quantifier each. Full 

discussion of this extension is not in the scope of the paper. 

5.1.3. General Model for Specification of the Semantics of 

Complex Events 

Zimmer and Unland suggest a meta-model for specification of the semantics of 

complex events in active databases [36]. Events in this model are instantaneous, 

atomic occurrences and include database events, external events and temporal 

events. 

The meta-model is based upon three independent dimensions: event instance 

pattern, event instance selection, and event instance consumption. These 

dimensions are further refined into sub-dimensions. The following paragraphs 

describe these dimensions in further details. 
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1. Event instance pattern of a complex event type Ei describes at an abstract 

level the event instance sequences that will trigger event instances of Ei. It 

considers five aspects. 

1.1. The event types whose instances must (or must not) occur in an 

event instance sequence and the restrictions concerning their 

order are defined by an event operator and its component event 

types. The model provides the sequence, conjunction, disjunction, 

negation and simultaneous operator. The simultaneous operator 

requires that instances of the component event types occur 

simultaneously. 

1.2. A delimiter that restricts the number of event instances of a 

component event type, which must occur to satisfy the event 

instance pattern, can be specified. 

1.3. Operator modes are used to define coupling and concurrency. 

Coupling mode defines whether event instance patterns may be 

interrupted by event instances not relevant to the event detection. 

Concurrency mode defines whether the time interval associated 

with the event instances, which cause a complex event to occur, 

may overlap. 

1.4. Context conditions define whether the values of a parameter of 

different instances must be the same or different or without any 

restrictions. Note that context conditions can only be imposed on 

context parameters (transaction, process, user, application and 

etc.)  

2. Event instance selection defines which events are bounded to a complex 

event. This selection is performed individually for each component event 

and selects the first, the last or every (commutative) instance of the 

component that satisfies the event operator. If the strong keyword is 

specified, the first (last) instance of the component event is selected before 

the system checks if it satisfies the event operator. Several composite 

events can be triggered at once if more than one instance of an event 

component is selected by specifying the combinations minimum or 

combinations keywords. The mode combinations minimum defines that 



48 

 

only the minimum number of event instances required by the delimiter of 

the event component are taken into account. The mode combination does 

not impose this constraint and larger sets of event instances can be 

considered.  

3. Event instance consumption determines the points in time in which events 

become invalid, i.e., they cannot be considered for the detection of further 

complex events. Three different consumption modes can be specified 

individually for each component event type. 

•  The shared mode does not delete any instance of the component 

event. 

•  The exclusive mode deletes all instances of the component event 

that were selected for the composition of the composite event. 

•  The ext_exclusive mode deletes all instances of the component 

event that occurred before instances of the component events that 

were selected for the composition of the composite event. 

The inside or the outside keyword can be specified in conjunction with the 

consumption mode to define the availability of event instance only inside or 

outside a group of composite events that are triggered together. 

Amit extends the semantics of the meta-model in several aspects: 

1. The meta-model does not support the operators atleast, atmost, nth, unless, at, 

after, and every. 

2. The meta-model cannot express the information reported with detected 

composite events, thus limiting the expressiveness of nested situation. 

3. The meta-model cannot express time intervals during which event 

composition is relevant. The terms initiator and terminator presented in the 

model, refer to the first and last event in an event instance sequence; these 

events are not used to temporal bound the event instance sequence. 

4. The meta-model makes limited usage of the semantic information that is 

reported with events during event composition. It is limited to information 

reported by database events and only allows some equality conditions 

(parameters) on components events (operands). 
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5. The meta-model supports three predetermined event instance reuse policies: 

reuse all events, delete all events, and delete events that did not trigger a 

composite event. 

5.1.4. Additional Research Prototypes 

Research on complex events for active databases is quite comprehensive and 

additional research prototypes have been proposed. Most of these prototypes, 

including EXACT [12], REACH [37], ACOOD [3], ROCK & ROLL [13], 

Chimera [27], and REFLEX [28] do not offer new functionality. Other prototypes 

offer new functionality by introducing new operators. These include HiPAC [11] 

that introduces the closure operators, denoted E*, that is signaled when E has been 

signaled one or more times within a transaction; SAMOS [17] that deals with the 

detection of complex events using colored petri-nets and introduces the history 

operator TIMES(n, E) that is signaled after each n occurrences of E; and NAOS 

[9] that introduces the strict disjunction operator that triggers a composite event if 

the component events occur exclusively. It also introduces some special operators 

for cases, in which the events are themselves composite events. Additional 

prototypes that are not based on event algebra but on functional programming and 

real time logic include PFL [33], that is based on functional programming; JEM 

[1][20][24] and FTL[31], that are based on  temporal logic; and ADL [2]. 

5.2. Event Correlation 

Network management tools identify network faults and send some type of alerts to 

an event console. These tools often flood the event console with large quantities 

of alerts. The system operator, who watches the event console, must look through 

overabundance of data before he can identify the real problem and take a 

corrective action. 

Event correlation systems filter network-messages and correlate network data to 

determine if a network problem occurred. Commercial event correlation solutions 

include VERITAS NerveCenter [39], HP OpenView [31], SMARTS InCharge 

[35],and Lucent NetworkFaultManagement.  

Event correlation (network management) systems are designed to handle mainly 

network events. Their expressive power is limited to the required functionality in  
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ODE Amit 

E andsign F Operator = conjunction 
First operand event: “E”  
Second operand event: “F”   

relative (E, F) 
 

Lifespan initiator = event: “F” correlation: “ignore” 
Operator = nth 1 
Detection mode = immediate 
First operand = event: “E”  

relative + (E, F) 
 

Lifespan initiator = event: “F” correlation: “add” 
Operator = nth 1 
Detection mode = immediate 
First operand = event: “E”  

E orsign F Operator = nth 1 
First operand = event: “E”  
Second operand = event: “F”   

prior (E, F) Operator = sequence 
First operand = event: “E1”  
Second operand = event: “E2”  

prior (E1, E2, … En) Operator = sequence 
First operand = event: “E1”  
Second operand = event: “E2”  
… 
Nth operand = event: “En”  

sequence  
(E1, E2, … En) 

Operator = sequence 
First operand = event: “E1”  
Second operand = situation 

Lifespan initiator = event: “E1”  
Lifespan terminator = event: “E2”  
Operator = not 

Third operand = situation 
Lifespan initiator = event: “E2”  
Lifespan terminator = event: “E3”  
Operator = not 

… 
Nth operand = situation 

Lifespan initiator = event: “En-1”  
Lifespan terminator = event: “En”  
Operator = not 

first Operator = nth1 
Repeat mode = once  

E|F Nested situations F where E is an operand 
<n> E Operator = nth n 

First operand = event: “E” quantifier: “each”  
every <n> E Operator = nth n 

First operand = event: “E” quantifier: “each” retain: “false” 
F / E Operator = sequence 

First operand = event: “E” quantifier: “first”  
Second operand = event: “F” quantifier: “first” 
Repeat mode = once 

Table 3 – ODE operators expressed in Amit 
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Snoop Amit 

Disjunction 
E1 ∨  E2 ∨  … En 

2Operator = nth 1 
First operand event: “E1”  
Second operand event: “E2”  
… 
Nth operand event: “En”  

Conjunction 
E1 ∧  E2 ∧  … En 

Operator = all 
First operand = event: “E1” quantifier: “last” 
Second operand = event: “E2” quantifier: “last” 
… 
Nth operand = event: “En” quantifier: “last” 

Sequence 
E1 ; E2 ; … En 

Operator = sequence 
First operand = event: “E1” quantifier: “last” 
Second operand = event: “E2” quantifier: “last” 
… 
Nth operand = event: “En” quantifier: “last” 

Any(m, E1, E2, ... En) Operator = atleast m 
First operand = event: “E1” quantifier: “last”  
Second operand = event: “E2” quantifier: “last”  
… 
Nth operand = event: “En” quantifier: “last”  

Any(m, E*) Operator = atleast m 
First operand = event: “E” quantifier: “each”  

A(E1, E2, E3) Lifespan initiator = event: “E1” correlation: “add” 
Lifespan terminator = event: “E1” type: “discard” 
Lifespan terminator = event: “E3” type: “terminate” 
Operator = nth 1 
First operand = event: “E2”  

+A*(E1, E2, E3) Lifespan initiator = event: “E1” correlation: “add” 
Lifespan terminator = event: “E1” type: “discard” 
Lifespan terminator = event: “E3” type: “terminate” 
Operator = nth 1 
Detection mode = delayed 
First operand = event: “E2”  

P(E1, t, E3) Lifespan initiator = event: “E1” correlation: “add” 
Lifespan terminator = event: “E1” type: “discard” 
Lifespan terminator = event: “E3” type: “terminate” 
Operator = every t 

P*(E1, t, E3) Lifespan initiator = event: “E1” correlation: “add” 
Lifespan terminator = event: “E1” type: “discard” 
Lifespan terminator = event: “E3” type: “terminate” 
Operator = every t 
Detection mode = delayed 

Table 4 – Snoops operators in recent parameter contexts expressed in Amit 

                                                 
2 An Amit template can be created to express a disjunction operator explicitly. Amit template is a 

generic situation that is used to defined explicit situations based on parameters. A template for the 

disjunction operator where the specific events in the disjunction are given as parameters simplifies 

the definition of disjunction. Full discussion of templates in Amit is not in the scope of the paper. 
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Snoop Amit 

Disjunction 
E1 ∨  E2 ∨  … En 

Operator = nth 1 
First operand event: “E1”  
Second operand event: “E2”  
… 
Nth operand event: “En”  

Conjunction 
E1 ∧  E2 ∧  … En 

Operator = all 
First operand = event: “E1” quantifier: “first” 
Second operand = event: “E2” quantifier: “first” 
… 
Nth operand = event: “En” quantifier: “first” 

Sequence 
E1 ; E2 ; … En 

Operator = sequence 
First operand = event: “E1” quantifier: “first” 
Second operand = event: “E2” quantifier: “first” 
… 
Nth operand = event: “En” quantifier: “first” 

Any(m, E1, E2, ... En) Operator = atleast m 
First operand = event: “E1” quantifier: “first”  
Second operand = event: “E2” quantifier: “first”  
… 
Nth operand = event: “En” quantifier: “first”  

Any(m, E*) Operator = atleast m 
First operand = event: “E” quantifier = “each”  

A(E1, E2, E3) Lifespan initiator = event: “E1” correlation: “ignore” 
Lifespan terminator = event: “E3” type: “terminate” 
Operator = nth 1 
First operand = event: “E2”  

A*(E1, E2, E3) Lifespan initiator = event: “E1” correlation: “ignore” 
Lifespan terminator = event: “E3” type: “terminate” 
Operator = nth 1 
Detection mode = delayed 
First operand = event: “E2”  

P(E1, t, E3) Lifespan initiator = event: “E1” correlation: “ignore” 
Lifespan terminator = event: “E3” type: “terminate” 
Operator = every t 

P*(E1, t, E3) Lifespan initiator = event: “E1” correlation: “ignore” 
Lifespan terminator = event: “E3” type: “terminate” 
Operator = every t 
Detection mode = delayed 

Table 5 – Snoops operators in chronicle parameter contexts expressed in Amit 
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Snoop Amit 

Disjunction 
E1 ∨  E2 ∨  … En 

Operator = nth 1 
First operand event: “E1”  
Second operand event: “E2”  
… 
Nth operand event: “En” 

Conjunction 
E1 ∧  E2 ∧  … En 

Operator = all 
First operand = event: “E1” quantifier: “each” 
Second operand = event: “E2” quantifier: “each” 
… 
Nth operand = event: “En” quantifier: “each” 

Sequence 
E1 ; E2 ; … En 

Operator = sequence 
First operand = event: “E1” quantifier: “each” 
Second operand = event: “E2” quantifier: “each” 
… 
Nth operand = event: “En” quantifier: “each” 

Any(m, E1, E2, ... En) Operator = atleast m 
First operand = event: “E1” quantifier: “first”  
Second operand = event: “E2” quantifier: “first”  
… 
Nth operand = event: “En” quantifier: “first”  

Any(m, E*) Operator = atleast m 
First operand = event: “E” quantifier = “each”  

A(E1, E2, E3) Lifespan initiator = event: “E1” correlation: “add” 
Lifespan terminator = event: “E3” type: “terminate” quantifier: “first” 
Operator = nth 1 
First operand = event: “E2”  

A*(E1, E2, E3) Lifespan initiator = event: “E1” correlation: “add” 
Lifespan terminator = event: “E3” type: “terminate” quantifier: “first” 
Operator = nth 1 
Detection mode = delayed 
First operand = event: “E2”  

P(E1, t, E3) Lifespan initiator = event: “E1” correlation: “add” 
Lifespan terminator = event: “E3” type: “terminate” quantifier: “first” 
Operator = every t 

P*(E1, t, E3) Lifespan initiator = event: “E1” correlation: “add” 
Lifespan terminator = event: “E3” type: “terminate” quantifier: “first” 
Operator = every t 
Detection mode = delayed 

Table 6 – Snoops operators in continuous parameter contexts expressed in Amit 
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 (domain independent) solution that supports the fundamentals of a situation 

definition we described earlier. 

1. HP OpenView Event Correlation Services (ECS) [31] is designed to deal 

with the problems associated with event storms in the telecommunication 

environment. Events have a transit delay, which is the delay imposed by 

the management network, and used to reorder incorrectly ordered events. 

OpenView uses correlation circuits for the definition of event correlation. 

A correlation circuit is a set of interconnected and appropriately 

configured nodes, which define a logical function that represents an 

operator in event algebra. OpenView supports nodes that represent the 

conjunction, counting and unless operators. It also supports nodes for 

event filtering and for holding and extracting event data. 

2. SMARTS InCharge [35] correlates events by employing a coding 

technique that matches alarms with signatures of known problems in real-

time. A set of events that represent symptoms of problems is treated as a 

code that identifies the problem. A codebook is an optimal subset of 

events that must be monitored to distinguish the problems of interest from 

each other, while ensuring the desired level of noise tolerance. 

Consequently a codebook is a correlation matrix of problems and events. 

The events in the codebook are monitored and analyzed in real-time. 

Distinction between problems is measured by the Hamming distance 

between their codes, thus a decrease in the set of monitored events will 

cause a decrease in the tolerance for observation errors.  The supported 

pattern on event history is a conjunction of events within a time window. 

3. VERITAS NerveCenter [39] correlates network events. When a 

predefined network condition is detected, NerveCenter stores the event 

information in a finite state machine called an alarm. The alarm continues 

to track the status of the object being monitored. The alarm waits for 

subsequent events or issues polls to determine if the condition warrants 

further action. To correlate and filter this data, NerveCenter relies on 

configurable models of network and system behavior, called behavior 

models, for each type of managed resource. A behavior model is a group 

of NerveCenter objects that detect and handle a particular network or 
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system behavior. A typical behavior model consists of an alarm with all its 

supporting polls and masks, though behavior models can have multiple 

alarms. Any managed device can be associated with one or more behavior 

models. 

5.3. Workflow Management 

Workflow management systems (WfMS) [22] are cooperative environments in 

which multiple distributed processing entities cooperate in order to accomplish 

tasks; processing entities enact workflows by reacting to and generating new 

events.  

Several research works [34][8][15] have proposed the use of event-condition-

action rules as provided by active database management systems as one of the 

possible features of workflow execution; some of which use composite events to 

detect complex workflow situations. 

Commercial WfMS [41] and standard proposals [40] do not support event 

composition. Although, event services (as, e.g., specified in CORBA Services 

[10]) support the notion of event, these services are restricted to primitive events 

and, typically, are hybrid in the sense that they rely on both, messages and events 

as coordination paradigms.   
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6. Conclusion 

This paper has presented the “situation manager” component of Amit.   Amit has 

been implemented in Java, and is being used as the core technology behind the e-

business Management Service offering of IBM Global Services.  It is also being 

integrated with various products and services of IBM.  The situation manager was 

designed to achieve both: high usability level and high performance (lower bound 

of about 2000 events per second), 

There is a substantial amount of further research that is being carried out now, and 

it deals with areas such as: extending Amit operators from temporal to spatio-

temporal, adding uncertainty consideration, adding visualization and analysis tool 

around Amit, adding inference mechanism to derive rules out of model, and 

dealing with “deep” temporal issues.    
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Appendix A – Situation language DTD 

<!ELEMENT amit (event | situation | lifespan | key)> 

 

<!ELEMENT event (eventAttribute+)> 

<!ATTLIST event 

 name NMTOKEN #REQUIRED > 

 

<!ELEMENT eventAttribute EMPTY> 

<!ATTLIST eventAttribute 

 name NMTOKEN #REQUIRED 

 type (string | number | boolean) #REQUIRED > 

 

<!ELEMENT situation (operator, situationAttribute+)> 

<!ATTLIST situation 

 name NMTOKEN #REQUIRED 

        lifespan NMTOKEN #REQUIRED 

 internal (true | false) 'false'> 

 

<!ELEMENT operator (all | sequence | atleast | atmost | nth | not | unless | every | at | after )> 

 

<!ELEMENT all (operandAll+ ,keyBy*) > 

<!ATTLIST all 

 detectionMode (immediate | deferred | delayed) 'immediate' 

 where CDATA #IMPLIED 

 repeatMode (once | always) 'always' > 

 

<!ELEMENT operandAll EMPTY> 

<!ATTLIST operandAll 

        event NMTOKEN #REQUIRED 

       as NMTOKEN #IMPLIED 

 threshold CDATA #IMPLIED 

 quantifier (first | last | each) 'first' 

 quantifierType (absolute | relative) 'relative' 

 override CDATA 'false' 

 retain CDATA 'false' > 
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<!ELEMENT sequence (operandSequence , operandSequence+, keyBy* ) > 

<!ATTLIST sequence 

 detectionMode (immediate | deferred | delayed) 'immediate' 

 where CDATA #IMPLIED 

 repeatMode (once | always) 'always' > 

 

<!ELEMENT operandSequence EMPTY> 

<!ATTLIST operandSequence 

 event NMTOKEN #REQUIRED 

       as NMTOKEN #IMPLIED 

 threshold CDATA #IMPLIED 

 quantifier (first | last | each) 'first' 

 quantifierType (absolute | relative) 'relative' 

 override CDATA 'false' 

 retain CDATA 'false' > 

 

<!ELEMENT atleast (operandAtleast+, keyBy*) > 

<!ATTLIST atleast 

 quantity NMTOKEN #REQUIRED 

 detectionMode (immediate | deferred | delayed) 'immediate' 

 where CDATA #IMPLIED 

 repeatMode (once | always) 'once' > 

 

<!ELEMENT operandAtleast EMPTY> 

<!ATTLIST operandAtleast 

 event NMTOKEN #REQUIRED 

       as NMTOKEN #IMPLIED 

 threshold CDATA #IMPLIED 

 quantifier (first | last | each) 'each' 

 quantifierType (absolute | relative) 'relative' 

 override CDATA 'false' 

 retain CDATA 'false' 

 weight NMTOKEN '1' 

 counted (true | false) 'true' > 
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<!ELEMENT atmost (operandAtmost+, keyBy*) > 

<!ATTLIST atmost 

 quantity NMTOKEN #REQUIRED 

 detectionMode (immediate | deferred | delayed) #FIXED "deferred" 

 where CDATA #IMPLIED > 

 

<!ELEMENT operandAtmost EMPTY> 

<!ATTLIST operandAtmost 

 event NMTOKEN #REQUIRED 

 as NMTOKEN #IMPLIED 

 threshold CDATA #IMPLIED 

 quantifier (first | last | each) 'each' 

 quantifierType (absolute | relative) 'relative' 

 override CDATA 'false' 

 weight NMTOKEN '1' 

 counted (true | false) 'true' > 

 

<!ELEMENT nth (operandNth+, keyBy*) > 

<!ATTLIST nth 

 quantity NMTOKEN #IMPLIED 

 detectionMode (immediate | deferred | delayed) 'deferred' 

 where CDATA #IMPLIED 

 repeatMode (once | always) 'once' > 

 

<!ELEMENT operandNth EMPTY> 

<!ATTLIST operandNth 

 event NMTOKEN #REQUIRED 

       as NMTOKEN #IMPLIED 

 threshold CDATA #IMPLIED 

 quantifier (first | last | each) 'each' 

 quantifierType (absolute | relative) 'relative' 

 override CDATA 'false' 

 retain CDATA 'false' 

 weight NMTOKEN '1' 

 counted (true | false) 'true' > 
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<!ELEMENT not (operandNot+) > 

 

<!ELEMENT operandNot EMPTY> 

<!ATTLIST operandNot 

 event NMTOKEN #REQUIRED 

 as NMTOKEN #IMPLIED 

 threshold CDATA #IMPLIED > 

 

<!ELEMENT unless (operandUnless, operandNot ,keyBy*) > 

<!ATTLIST unless 

 where CDATA #IMPLIED> 

 

<!ELEMENT operandUnless EMPTY> 

<!ATTLIST operandUnless 

 event NMTOKEN #REQUIRED 

 as NMTOKEN #IMPLIED 

 threshold CDATA #IMPLIED 

 quantifier (first | last | each) 'first' 

 quantifierType (absolute | relative) 'relative' 

 override CDATA 'false'> 

 

 

<!ELEMENT every EMPTY > 

<!ATTLIST every 

 interval NMTOKEN #REQUIRED > 

 

<!ELEMENT at EMPTY > 

<!ATTLIST at 

 timePattern CDATA #IMPLIED > 

 

<!ELEMENT after (operandAfter+, keyBy*) > 

<!ATTLIST after 

 correlate (add | ignore | replace) 'ignore' 

 interval NMTOKEN #REQUIRED > 

 

<!ELEMENT operandAfter EMPTY> 

<!ATTLIST operandAfter 

 event NMTOKEN #REQUIRED 

       as NMTOKEN #IMPLIED 

 threshold CDATA #IMPLIED > 
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<!ELEMENT situationAttribute EMPTY> 

<!ATTLIST situationAttribute 

 name NMTOKEN #REQUIRED 

 type (string | number | boolean) #REQUIRED 

 expression CDATA #IMPLIED > 

 

<!ELEMENT lifespan (initiator , terminator, keyBy*)> 

<!ATTLIST lifespan 

 name NMTOKEN #REQUIRED > 

 

<!ELEMENT initiator ((startup , eventInitiator*) | eventInitiator+)> 

 

<!ELEMENT startup EMPTY > 

 

<!ELEMENT eventInitiator EMPTY > 

<!ATTLIST eventInitiator 

 event NMTOKEN #REQUIRED 

 as NMTOKEN #IMPLIED 

 correlate (add | ignore) 'ignore' 

 where CDATA #IMPLIED> 

 

<!ELEMENT terminator ((eventTerminator+ , expirationInterval?) | expirationInterval | 

noTerminator)> 

 

<!ELEMENT eventTerminator EMPTY> 

<!ATTLIST eventTerminator 

 event NMTOKEN #REQUIRED 

 as NMTOKEN #IMPLIED 

 quantifier (first | last | each ) 'each' 

 terminationType (terminate | discard) 'terminate' 

 where CDATA #IMPLIED > 

 

<!ELEMENT expirationInterval EMPTY> 

<!ATTLIST expirationInterval 

 timeInterval NMTOKEN #REQUIRED 

 terminationType (terminate | discard) 'terminate' > 

 

<!ELEMENT noTerminator EMPTY> 
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<!ELEMENT key (eventKey+) > 

<!ATTLIST key 

 name NMTOKEN #REQUIRED 

 type (string | number | boolean) #IMPLIED > 

 

<!ELEMENT eventKey EMPTY > 

<!ATTLIST eventKey 

 event NMTOKEN #REQUIRED 

 attribute NMTOKEN #REQUIRED > 

 

<!ELEMENT keyBy EMPTY> 

<!ATTLIST keyBy 

 name NMTOKEN #REQUIRED > 


